Interleukin-1β (IL-1β) has a wide spectrum of inflammatory, metabolic, haemopoietic, and immunological properties. Because it produces fever when injected into animals and humans, it is considered an endogenous pyrogen. There is evidence to suggest that Ca2+ plays a critical role in the central mechanisms of thermoregulation, and in the intracellular signaling pathways controlling fever induced by IL-1β and other pyrogens. Data from different labs indicate that Ca2+ and Na+ determine the temperature set point in the posterior hypothalamus (PH) of various mammals and that changes in Ca2+ and PGE2 concentrations in the cerebrospinal fluid (CSF) of these animals are associated with IL-1β-induced fever. Antipyretic drugs such as acetylsalicylic acid, dexamethasone, and lipocortin 5-(204-212) peptide counteract IL-1β-induced fever and abolish changes in Ca2+ and PGE2 concentrations in CSF. In vitro studies have established that activation of the nitric oxide (NO)/cyclic GMP (cGMP) pathway is part of the signaling cascade transducing Ca2+ mobilization in response to IL-1β and that the ryanodine (RY)- and inositol-(1,4,5)-trisphosphate (IP3)-sensitive pools are the main source of the mobilized Ca2+. It is concluded that the NO/cGMP/Ca2+ pathway is part of the signaling cascade subserving some of the multiple functions of IL-1β.

Palmi, M., Meini, A. (2002). Role of the Nitric Oxide/Cyclic GMP/Ca2+ Signaling Pathway in the Pyrogenic Effect of Interleukin-1beta. MOLECULAR NEUROBIOLOGY, 25(2), 133-147 [10.1385/MN:25:2:133].

Role of the Nitric Oxide/Cyclic GMP/Ca2+ Signaling Pathway in the Pyrogenic Effect of Interleukin-1beta

PALMI, M.;MEINI, A.
2002-01-01

Abstract

Interleukin-1β (IL-1β) has a wide spectrum of inflammatory, metabolic, haemopoietic, and immunological properties. Because it produces fever when injected into animals and humans, it is considered an endogenous pyrogen. There is evidence to suggest that Ca2+ plays a critical role in the central mechanisms of thermoregulation, and in the intracellular signaling pathways controlling fever induced by IL-1β and other pyrogens. Data from different labs indicate that Ca2+ and Na+ determine the temperature set point in the posterior hypothalamus (PH) of various mammals and that changes in Ca2+ and PGE2 concentrations in the cerebrospinal fluid (CSF) of these animals are associated with IL-1β-induced fever. Antipyretic drugs such as acetylsalicylic acid, dexamethasone, and lipocortin 5-(204-212) peptide counteract IL-1β-induced fever and abolish changes in Ca2+ and PGE2 concentrations in CSF. In vitro studies have established that activation of the nitric oxide (NO)/cyclic GMP (cGMP) pathway is part of the signaling cascade transducing Ca2+ mobilization in response to IL-1β and that the ryanodine (RY)- and inositol-(1,4,5)-trisphosphate (IP3)-sensitive pools are the main source of the mobilized Ca2+. It is concluded that the NO/cGMP/Ca2+ pathway is part of the signaling cascade subserving some of the multiple functions of IL-1β.
2002
Palmi, M., Meini, A. (2002). Role of the Nitric Oxide/Cyclic GMP/Ca2+ Signaling Pathway in the Pyrogenic Effect of Interleukin-1beta. MOLECULAR NEUROBIOLOGY, 25(2), 133-147 [10.1385/MN:25:2:133].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/2716
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo