Exp Brain Res. 2007 May;179(1):145-6. Abstract The aim of the present study was to investigate the existence or otherwise of a functional recurrent inhibitory system (Renshaw cell system) in the motoneurons that innervate human masticatory muscles. In a previous study, L: -acetylcarnitine (L: -Ac), a substance known to potentiate recurrent inhibition in humans was found to alter, in a specific way, the discharge variability, and the synchronous activity of motor units depending on the presence or absence of recurrent inhibition in the corresponding motoneuron pool. Using a similar paradigm, we have recorded the tonic discharge activity of motor unit pairs from the masseter muscle during voluntary isometric contraction while subjects were undergoing continuous intravenous saline (SAL, NaCl 0.9%) perfusion. Following a brief baseline-recording period, the subjects were given a test injection of either L: -Ac or isotonic saline (SAL) in a double blind manner. The variability, synchronization, and coherence between the motor unit discharges were analysed during three successive periods: pre-injection, during injection, and post-injection, each lasting 2-3 min. Neither L: -Ac nor SAL injection induced a significant change in the inter-spike interval (ISI) or the coefficient of variation of the ISIs in the motor units tested. There were also no significant changes in the pattern of synchronous activity or in the coherence, which reflects the common frequency content of the unit discharges. Reminiscent of what had been observed previously with motoneurons without recurrent inhibition in the Abductor Digitorum Minimi muscle, the lack of effects of L: -Ac injection on the firing behaviour of masseter motoneurons may suggest that classical Renshaw cell inhibition is lacking in this motoneuron pool.

TURKER K., S., Schmied, A., Rossi, A., Mazzocchio, R., SOWMAN P., F., & Vedel, J.P. (2007). Is the human masticatory system devoid of recurrent inhibition?. EXPERIMENTAL BRAIN RESEARCH, 179(1), 131-134.

Is the human masticatory system devoid of recurrent inhibition?

ROSSI, ALESSANDRO;
2007

Abstract

Exp Brain Res. 2007 May;179(1):145-6. Abstract The aim of the present study was to investigate the existence or otherwise of a functional recurrent inhibitory system (Renshaw cell system) in the motoneurons that innervate human masticatory muscles. In a previous study, L: -acetylcarnitine (L: -Ac), a substance known to potentiate recurrent inhibition in humans was found to alter, in a specific way, the discharge variability, and the synchronous activity of motor units depending on the presence or absence of recurrent inhibition in the corresponding motoneuron pool. Using a similar paradigm, we have recorded the tonic discharge activity of motor unit pairs from the masseter muscle during voluntary isometric contraction while subjects were undergoing continuous intravenous saline (SAL, NaCl 0.9%) perfusion. Following a brief baseline-recording period, the subjects were given a test injection of either L: -Ac or isotonic saline (SAL) in a double blind manner. The variability, synchronization, and coherence between the motor unit discharges were analysed during three successive periods: pre-injection, during injection, and post-injection, each lasting 2-3 min. Neither L: -Ac nor SAL injection induced a significant change in the inter-spike interval (ISI) or the coefficient of variation of the ISIs in the motor units tested. There were also no significant changes in the pattern of synchronous activity or in the coherence, which reflects the common frequency content of the unit discharges. Reminiscent of what had been observed previously with motoneurons without recurrent inhibition in the Abductor Digitorum Minimi muscle, the lack of effects of L: -Ac injection on the firing behaviour of masseter motoneurons may suggest that classical Renshaw cell inhibition is lacking in this motoneuron pool.
File in questo prodotto:
File Dimensione Formato  
Is the human masticatory system devoid of recurrent inhibition.pdf

non disponibili

Tipologia: Abstract
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 25.05 kB
Formato Adobe PDF
25.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/26324
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo