In this paper we study the class S of skew Dyck paths, i.e. of those lattice paths that are in the first quadrant, begin at the origin, end on the x-axis, consist of up steps U=(1,1), down steps D=(1,-1), and left steps L=(-1,-1), and such that up steps never overlap with left steps. In particular, we show that these paths are equinumerous with several other combinatorial objects, we describe some involutions on this class, and finally we consider several statistics on S.
Deustch, E., Munarini, E., Rinaldi, S. (2010). Skew Dyck paths. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 140(8), 2191-2203 [10.1016/j.jspi.2010.01.015].
Skew Dyck paths
RINALDI S.
2010-01-01
Abstract
In this paper we study the class S of skew Dyck paths, i.e. of those lattice paths that are in the first quadrant, begin at the origin, end on the x-axis, consist of up steps U=(1,1), down steps D=(1,-1), and left steps L=(-1,-1), and such that up steps never overlap with left steps. In particular, we show that these paths are equinumerous with several other combinatorial objects, we describe some involutions on this class, and finally we consider several statistics on S.File | Dimensione | Formato | |
---|---|---|---|
Skew Dyck paths.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
390.17 kB
Formato
Adobe PDF
|
390.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/25560
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo