In the work The Friedman–Joichi–Stanton Monotonicity Conjecture at Primes, George Andrews gave a proof of the fact (first mentioned by Jim Propp a while ago) that the q-binomial coefficient View the MathML source divided by the q-integer [n]q is a polynomial in q, as long as n and k are relatively prime (see [G.E. Andrews, The Friedman–Joichi–Stanton Monotonicity Conjecture at Primes, in: DIMACS Ser., Amer. Math. Soc., in press, Theorem 2]). In this note we provide a proof that permits to generalize Theorem 2 in the case in which n and k are not relatively prime, and further, to extend Theorem 2 to the q-multinomial coefficient.

Brunetti, S., & DEL LUNGO, A. (2004). On the polynomial $frac{1}{[n]_q}left[{n atop k} right]_q$. ADVANCES IN APPLIED MATHEMATICS, 33, 487-491.

On the polynomial $frac{1}{[n]_q}left[{n atop k} right]_q$

BRUNETTI, SARA;
2004

Abstract

In the work The Friedman–Joichi–Stanton Monotonicity Conjecture at Primes, George Andrews gave a proof of the fact (first mentioned by Jim Propp a while ago) that the q-binomial coefficient View the MathML source divided by the q-integer [n]q is a polynomial in q, as long as n and k are relatively prime (see [G.E. Andrews, The Friedman–Joichi–Stanton Monotonicity Conjecture at Primes, in: DIMACS Ser., Amer. Math. Soc., in press, Theorem 2]). In this note we provide a proof that permits to generalize Theorem 2 in the case in which n and k are not relatively prime, and further, to extend Theorem 2 to the q-multinomial coefficient.
Brunetti, S., & DEL LUNGO, A. (2004). On the polynomial $frac{1}{[n]_q}left[{n atop k} right]_q$. ADVANCES IN APPLIED MATHEMATICS, 33, 487-491.
File in questo prodotto:
File Dimensione Formato  
BDAA04.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 77.69 kB
Formato Adobe PDF
77.69 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/25423
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo