We clarify the relationship between basic constructions of semi-abeliancategory theory and the theory of ideals and clots in universalalgebra. To name a few results in this frame, which establish connections between hitherto separated subjects, 0-regularity in universalalgebra corresponds to the requirement that regular epimorphisms are normal; we describe clots in categorical terms and show that ideals are images of clots under regular epimorphisms; we show that the relationship between internal precrossed modules and internal reflexive graphs extends the relationship between compatible reflexive binary relations and clots.
Janelidze, G., Marki, L., Ursini, A. (2007). Ideals and clots in universal algebra and in semi-abelian categories. JOURNAL OF ALGEBRA, 307(1), 191-208 [10.1016/j.jalgebra.2006.05.022].
Ideals and clots in universal algebra and in semi-abelian categories
Ursini A.
2007-01-01
Abstract
We clarify the relationship between basic constructions of semi-abeliancategory theory and the theory of ideals and clots in universalalgebra. To name a few results in this frame, which establish connections between hitherto separated subjects, 0-regularity in universalalgebra corresponds to the requirement that regular epimorphisms are normal; we describe clots in categorical terms and show that ideals are images of clots under regular epimorphisms; we show that the relationship between internal precrossed modules and internal reflexive graphs extends the relationship between compatible reflexive binary relations and clots.File | Dimensione | Formato | |
---|---|---|---|
clotsUniv.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
174.08 kB
Formato
Adobe PDF
|
174.08 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/24857
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo