In this paper we consider a class of nonlinear periodic differential systems perturbed by two nonlinear periodic terms with multiplicative different powers of a small parameter ε > 0. For such a class of systems we provide conditions that guarantee the existence of periodic solutions of given period T >0. These conditions are expressed in terms of the behaviour on the boundary of an open bounded set U of R^n of the solutions of suitably defined linearized systems. The approach is based on the classical theory of the topological degree for compact vector fields. An application to the existence of periodic solutions to the van der Pol equation is also presented.

M., K., O., M., & Nistri, P. (2004). Small parameter perturbations of nonlinear periodic systems. NONLINEARITY, 17, 193-205.

Small parameter perturbations of nonlinear periodic systems

NISTRI, PAOLO
2004

Abstract

In this paper we consider a class of nonlinear periodic differential systems perturbed by two nonlinear periodic terms with multiplicative different powers of a small parameter ε > 0. For such a class of systems we provide conditions that guarantee the existence of periodic solutions of given period T >0. These conditions are expressed in terms of the behaviour on the boundary of an open bounded set U of R^n of the solutions of suitably defined linearized systems. The approach is based on the classical theory of the topological degree for compact vector fields. An application to the existence of periodic solutions to the van der Pol equation is also presented.
File in questo prodotto:
File Dimensione Formato  
397604-U-GOV.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 127.9 kB
Formato Adobe PDF
127.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/24632
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo