Event-related repetitive transcranial magnetic stimulation (rTMS) can dynamically interfere with the memory encoding of complex visual scenes. Here, we investigated the critical time elapsing from stimulus presentation to the formation of an effective memory trace by delivering rTMS (900 ms at 20 Hz) during the encoding of visual scenes at different poststimulus delays (from 100 to 500 ms) in 28 healthy volunteers. The stimulation delay showed a robust inverse correlation with the correct retrieval of encoded images. In particular, rTMS stimulation delivered with a delay of 500 ms and lasting for 400 ms after stimulus offset resulted in a huge drop in retrieval accuracy. Such a timing suggests that rTMS affects the formation of long-term memory through interference with postperceptual executive processes, rather than with perceptual analysis of the stimuli. The effect was specific for stimulation of the left dorsolateral prefrontal cortex (DLPFC), whereas rTMS applied to the right DLPFC, vertex (active control site), as well as sham stimulation (placebo) did not affect accuracy. These results confirm the crucial role of the left DLPFC in encoding and provide novel information about the critical timing of its engagement in the formation, consolidation, and maintenance of the memory trace.
Rossi, S., Innocenti, I., Polizzotto, N.R., Feurra, M., De Capua, A., Ulivelli, M., et al. (2011). Temporal dynamics of memory trace formation in the human prefrontal cortex. CEREBRAL CORTEX, 21(2), 368-373 [10.1093/cercor/bhq103].
Temporal dynamics of memory trace formation in the human prefrontal cortex
Rossi S.;Ulivelli M.;
2011-01-01
Abstract
Event-related repetitive transcranial magnetic stimulation (rTMS) can dynamically interfere with the memory encoding of complex visual scenes. Here, we investigated the critical time elapsing from stimulus presentation to the formation of an effective memory trace by delivering rTMS (900 ms at 20 Hz) during the encoding of visual scenes at different poststimulus delays (from 100 to 500 ms) in 28 healthy volunteers. The stimulation delay showed a robust inverse correlation with the correct retrieval of encoded images. In particular, rTMS stimulation delivered with a delay of 500 ms and lasting for 400 ms after stimulus offset resulted in a huge drop in retrieval accuracy. Such a timing suggests that rTMS affects the formation of long-term memory through interference with postperceptual executive processes, rather than with perceptual analysis of the stimuli. The effect was specific for stimulation of the left dorsolateral prefrontal cortex (DLPFC), whereas rTMS applied to the right DLPFC, vertex (active control site), as well as sham stimulation (placebo) did not affect accuracy. These results confirm the crucial role of the left DLPFC in encoding and provide novel information about the critical timing of its engagement in the formation, consolidation, and maintenance of the memory trace.File | Dimensione | Formato | |
---|---|---|---|
pdf temporal dynamics.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
471.99 kB
Formato
Adobe PDF
|
471.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/24362
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo