This study examines the Koehler and Symanovski copula function with specific marginals, such as the skew Student-t, the skew generalized secant hyperbolic, and the skew generalized exponential power distributions, in modelling financial returns and measuring dependent risks. The copula function can be specified by adding interaction terms to the cumulative distribution function for the case of independence. It can also be derived using a particular transformation of independent gamma functions. The advantage of using this distribution relative to others lies in its ability to model complex dependence structures among subsets of marginals, as we show for aggregate dependent risks of some market indices.

Palmitesta, P., Provasi, C. (2005). Aggregation of Dependent Risk Using the Koelher-Symanowski Copula Function. COMPUTATIONAL ECONOMICS, 25, 189-205.

Aggregation of Dependent Risk Using the Koelher-Symanowski Copula Function

PALMITESTA, PAOLA;
2005-01-01

Abstract

This study examines the Koehler and Symanovski copula function with specific marginals, such as the skew Student-t, the skew generalized secant hyperbolic, and the skew generalized exponential power distributions, in modelling financial returns and measuring dependent risks. The copula function can be specified by adding interaction terms to the cumulative distribution function for the case of independence. It can also be derived using a particular transformation of independent gamma functions. The advantage of using this distribution relative to others lies in its ability to model complex dependence structures among subsets of marginals, as we show for aggregate dependent risks of some market indices.
2005
Palmitesta, P., Provasi, C. (2005). Aggregation of Dependent Risk Using the Koelher-Symanowski Copula Function. COMPUTATIONAL ECONOMICS, 25, 189-205.
File in questo prodotto:
File Dimensione Formato  
comp_econ.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 302.33 kB
Formato Adobe PDF
302.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/23806
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo