Direct numerical simulations of the transition process from periodic to chaotic dynamics are presented for two variable Oregonator-diffusion model coupled with convection. Numerical solutions to the corresponding reaction-diffusion-convection system of equations show that natural convection can change in a qualitative way, the evolution of concentration distribution, as compared with convectionless conditions. The numerical experiments reveal distinct bifurcations as the Grashof number is increased. A transition to chaos similar to Ruelle-Takens-Newhouse scenario is observed. Numerical results are in agreement with the experiments.

Budroni, M.A., Masia, M., Rustici, M., Marchettini, N., Volpert, V., Cresto, P.C. (2008). Ruelle-Takens-Newhouse scenario in reaction-diffusion-convection system. THE JOURNAL OF CHEMICAL PHYSICS, 128(11), 111102-111102-4 [10.1063/1.2894480].

Ruelle-Takens-Newhouse scenario in reaction-diffusion-convection system

MARCHETTINI, N.;
2008-01-01

Abstract

Direct numerical simulations of the transition process from periodic to chaotic dynamics are presented for two variable Oregonator-diffusion model coupled with convection. Numerical solutions to the corresponding reaction-diffusion-convection system of equations show that natural convection can change in a qualitative way, the evolution of concentration distribution, as compared with convectionless conditions. The numerical experiments reveal distinct bifurcations as the Grashof number is increased. A transition to chaos similar to Ruelle-Takens-Newhouse scenario is observed. Numerical results are in agreement with the experiments.
2008
Budroni, M.A., Masia, M., Rustici, M., Marchettini, N., Volpert, V., Cresto, P.C. (2008). Ruelle-Takens-Newhouse scenario in reaction-diffusion-convection system. THE JOURNAL OF CHEMICAL PHYSICS, 128(11), 111102-111102-4 [10.1063/1.2894480].
File in questo prodotto:
File Dimensione Formato  
JCP08 R-T-N scenario.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 193.82 kB
Formato Adobe PDF
193.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/22951
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo