Let A be an infinite \Delta^0_2 set and let K be creative: we show that K \leq_Q A if and only if K \leq_{Q_1} A. (Here \leq_Q denotes Q-reducibility, and \leq_{Q_1} is the subreducibility of \leq_Q obtained by requesting that Q-reducibility be provided by a computable function f such that W_{f(x)} \cap W_{f(y)}=\emptyset, if x \ne y.) Using this result we prove that A is hyperhyperimmune if and only if no \Delta^0_2 subset B of A is s-complete, i.e. there is no \Delta^0_2 subset B of A such that \overline{K} \leq_s B, where \le_s denotes s-reducibility, and \overline{K} denotes the complement of K.
Omanadze, R.S.h., Sorbi, A. (2008). A characterization of the Δ20 hyperhyperimmune sets. THE JOURNAL OF SYMBOLIC LOGIC, 73(4), 1407-1415 [10.2178/jsl/1230396928].
A characterization of the Δ20 hyperhyperimmune sets
SORBI, ANDREA
2008-01-01
Abstract
Let A be an infinite \Delta^0_2 set and let K be creative: we show that K \leq_Q A if and only if K \leq_{Q_1} A. (Here \leq_Q denotes Q-reducibility, and \leq_{Q_1} is the subreducibility of \leq_Q obtained by requesting that Q-reducibility be provided by a computable function f such that W_{f(x)} \cap W_{f(y)}=\emptyset, if x \ne y.) Using this result we prove that A is hyperhyperimmune if and only if no \Delta^0_2 subset B of A is s-complete, i.e. there is no \Delta^0_2 subset B of A such that \overline{K} \leq_s B, where \le_s denotes s-reducibility, and \overline{K} denotes the complement of K.File | Dimensione | Formato | |
---|---|---|---|
fulltext-characterization.pdf
non disponibili
Descrizione: Articolo unico
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
114.14 kB
Formato
Adobe PDF
|
114.14 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/22895