A large 10-mer phage peptide library was panned against whole Escherichia coli cells, and an antimicrobial peptide (QEKIRVRLSA) was selected. The peptide was synthesized in monomeric and dendrimeric tetrabranched form (multiple antigen peptide [MAP]), which generally allows a dramatic increase of peptide stability to peptidases and proteases. The antibacterial activity of the dendrimeric peptide against E. coli was much higher than that of the monomeric form. Modification of the original sequence, by residue substitution or sequence shortening, produced three different MAPs, M4 (QAKIRVRLSA), M5 (KIRVRLSA), and M6 (QKKIRVRLSA) with enhanced stability to natural degradation and antimicrobial activity against a large panel of gram-negative bacteria. The MICs of the most potent peptide, M6, were as low as 4 to 8 g/ml against recent clinical isolates of multidrug-resistant Pseudomonas aeruginosa and members of the Enterobacteriaceae. The same dendrimeric peptides showed high stability to blood proteases, low hemolytic activity, and low cytotoxic effects on eukaryotic cells, making them promising candidates for the development of new antibacterial drugs.
Pini, A., Giuliani, A., Falciani, C., Runci, Y., Ricci, C., Lelli, B., et al. (2005). Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 49, 2665-2672.
Antimicrobial activity of novel dendrimeric peptides obtained by phage display selection and rational modification.
PINI, ALESSANDRO;FALCIANI, CHIARA;RICCI, CLAUDIA;LELLI, BARBARA;NERI, PAOLO;ROSSOLINI, GIAN MARIA;BRACCI, LUISA
2005-01-01
Abstract
A large 10-mer phage peptide library was panned against whole Escherichia coli cells, and an antimicrobial peptide (QEKIRVRLSA) was selected. The peptide was synthesized in monomeric and dendrimeric tetrabranched form (multiple antigen peptide [MAP]), which generally allows a dramatic increase of peptide stability to peptidases and proteases. The antibacterial activity of the dendrimeric peptide against E. coli was much higher than that of the monomeric form. Modification of the original sequence, by residue substitution or sequence shortening, produced three different MAPs, M4 (QAKIRVRLSA), M5 (KIRVRLSA), and M6 (QKKIRVRLSA) with enhanced stability to natural degradation and antimicrobial activity against a large panel of gram-negative bacteria. The MICs of the most potent peptide, M6, were as low as 4 to 8 g/ml against recent clinical isolates of multidrug-resistant Pseudomonas aeruginosa and members of the Enterobacteriaceae. The same dendrimeric peptides showed high stability to blood proteases, low hemolytic activity, and low cytotoxic effects on eukaryotic cells, making them promising candidates for the development of new antibacterial drugs.File | Dimensione | Formato | |
---|---|---|---|
Articolo Pini et al., 2005 AAC.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
152.37 kB
Formato
Adobe PDF
|
152.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/22569
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo