Radix Angelica sinensis is a Chinese medicinal herb that has been used extensively in the East for the treatment of cardiovascular diseases (CVDs). Angiogenesis plays an important role in the pathogenesis of CVDs. We hypothesized that Radix A. sinensis may contain angiogenesis modulators. In the current study, we investigated the effects of a volatile oil of Radix A. sinensis (VOAS) and n-butylidenephthalide (BP), one of the bioactive components in VOAS, on angiogenesis in vitro and in vivo. The results suggested that VOAS exerted anti-angiogenic effects by inhibiting human umbilical vein endothelial cell proliferation, migration and capillary-like tube formation on Matrigel. BP was also shown to be anti-angiogenic and its mechanisms were through inhibition of cell cycle progression and induction of apoptosis. Western blotting analysis indicated that the anti-angiogenic actions of BP were associated with the activation of p38 and ERK 1/2 but not SAPK/JNK and Akt signaling pathways. Further investigations showed that BP inhibited endothelial sprouting in an ex vivo mouse aortic ring model and was a potent inhibitor of the development of zebrafish subintestinal vessels in vivo. Our data using the volatile oil contrast with previous findings, which showed an aqueous extract of Radix A. sinensis was pro-angiogenic. This highlights the importance of identifying pro- and anti-angiogenic substances in Radix A. sinensis, not only for the development of novel angiogenesis modulators for the treatment of CVDs, but also to ensure the proper use of Radix A. sinensis as a nutraceutical.

Yeh, J.C., CINDROVA-DAVIES, T., Belleri, M., Morbidelli, L., Miller, N., Cho, C.W., et al. (2011). The natural compound n-butylidenephthalide derived from the volatile oil of Radix Angelica sinensis inhibits angiogenesis in vitro and in vivo. ANGIOGENESIS, 14(2), 187-197 [10.1007/s10456-011-9202-8].

The natural compound n-butylidenephthalide derived from the volatile oil of Radix Angelica sinensis inhibits angiogenesis in vitro and in vivo

MORBIDELLI L.;ZICHE M.;
2011-01-01

Abstract

Radix Angelica sinensis is a Chinese medicinal herb that has been used extensively in the East for the treatment of cardiovascular diseases (CVDs). Angiogenesis plays an important role in the pathogenesis of CVDs. We hypothesized that Radix A. sinensis may contain angiogenesis modulators. In the current study, we investigated the effects of a volatile oil of Radix A. sinensis (VOAS) and n-butylidenephthalide (BP), one of the bioactive components in VOAS, on angiogenesis in vitro and in vivo. The results suggested that VOAS exerted anti-angiogenic effects by inhibiting human umbilical vein endothelial cell proliferation, migration and capillary-like tube formation on Matrigel. BP was also shown to be anti-angiogenic and its mechanisms were through inhibition of cell cycle progression and induction of apoptosis. Western blotting analysis indicated that the anti-angiogenic actions of BP were associated with the activation of p38 and ERK 1/2 but not SAPK/JNK and Akt signaling pathways. Further investigations showed that BP inhibited endothelial sprouting in an ex vivo mouse aortic ring model and was a potent inhibitor of the development of zebrafish subintestinal vessels in vivo. Our data using the volatile oil contrast with previous findings, which showed an aqueous extract of Radix A. sinensis was pro-angiogenic. This highlights the importance of identifying pro- and anti-angiogenic substances in Radix A. sinensis, not only for the development of novel angiogenesis modulators for the treatment of CVDs, but also to ensure the proper use of Radix A. sinensis as a nutraceutical.
2011
Yeh, J.C., CINDROVA-DAVIES, T., Belleri, M., Morbidelli, L., Miller, N., Cho, C.W., et al. (2011). The natural compound n-butylidenephthalide derived from the volatile oil of Radix Angelica sinensis inhibits angiogenesis in vitro and in vivo. ANGIOGENESIS, 14(2), 187-197 [10.1007/s10456-011-9202-8].
File in questo prodotto:
File Dimensione Formato  
Angelica sinensis and angiogenesis.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 933.61 kB
Formato Adobe PDF
933.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/22278
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo