Gradient descent learning algorithms may get stuck in local minima, thus making the learning suboptimal. In this paper, we focus attention on multilayered networks used as autoassociators and show some relationships with classical linear autoassociators. In addition, using the theoretical framework of our previous research, we derive a condition which is met at the end of the learning process and show that this condition has a very intriguing geometrical meaning in the pattern space.

Bianchini, M., P., F., Gori, M. (1995). Learning in Multilayered Networks Used as Autoassociators. IEEE TRANSACTIONS ON NEURAL NETWORKS, 6(2), 512-515 [10.1109/72.363492].

Learning in Multilayered Networks Used as Autoassociators

BIANCHINI, MONICA;GORI, MARCO
1995-01-01

Abstract

Gradient descent learning algorithms may get stuck in local minima, thus making the learning suboptimal. In this paper, we focus attention on multilayered networks used as autoassociators and show some relationships with classical linear autoassociators. In addition, using the theoretical framework of our previous research, we derive a condition which is met at the end of the learning process and show that this condition has a very intriguing geometrical meaning in the pattern space.
1995
Bianchini, M., P., F., Gori, M. (1995). Learning in Multilayered Networks Used as Autoassociators. IEEE TRANSACTIONS ON NEURAL NETWORKS, 6(2), 512-515 [10.1109/72.363492].
File in questo prodotto:
File Dimensione Formato  
AUASS-TNN.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 342.1 kB
Formato Adobe PDF
342.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/22194
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo