The classical Minkowski sum of convex sets is defined by the sum of the corresponding support functions. The Lp extension of such a definition makes use of the sum of the p-th power of the support functions. A p-zonotope Zp is the p-sum of finitely many segments and is isometric to the unit ball of lq . In this paper we give a sharp upper estimate of the volume of Zp in terms of the volume of Z1 as well as a sharp lower estimate of the volume of the polar of Zp in terms of the same quantity. For p=1 the latter result provides a new approach to Reisner's inequality for the Mahler conjecture in the class of zonoids.

Campi, S., & Gronchi, P. (2006). Volume inequalities for Lp-zonotopes. MATHEMATIKA, 53, 71-80.

Volume inequalities for Lp-zonotopes

CAMPI, STEFANO;
2006

Abstract

The classical Minkowski sum of convex sets is defined by the sum of the corresponding support functions. The Lp extension of such a definition makes use of the sum of the p-th power of the support functions. A p-zonotope Zp is the p-sum of finitely many segments and is isometric to the unit ball of lq . In this paper we give a sharp upper estimate of the volume of Zp in terms of the volume of Z1 as well as a sharp lower estimate of the volume of the polar of Zp in terms of the same quantity. For p=1 the latter result provides a new approach to Reisner's inequality for the Mahler conjecture in the class of zonoids.
File in questo prodotto:
File Dimensione Formato  
Schneiderdef2.pdf

non disponibili

Tipologia: Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 144 kB
Formato Adobe PDF
144 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11365/22109
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo