In this paper we study how perturbing a matri x changes its nonnegative rank. We prove that the nonnegative rank can only increase in a neighborhood of a matrix with no zero columns. Also, we describe some special families of perturbations. We show how our results relate to statistics in terms of the study of maximum likelihood estimation for mixture models.
Bocci, C., Carlini, E., Rapallo, F. (2011). Perturbation of matrices and nonnegative rank with a view toward statistical models. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 32(4), 1500-1512 [10.1137/110825455].
Perturbation of matrices and nonnegative rank with a view toward statistical models
Bocci C.;
2011-01-01
Abstract
In this paper we study how perturbing a matri x changes its nonnegative rank. We prove that the nonnegative rank can only increase in a neighborhood of a matrix with no zero columns. Also, we describe some special families of perturbations. We show how our results relate to statistics in terms of the study of maximum likelihood estimation for mixture models.File | Dimensione | Formato | |
---|---|---|---|
82545.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
198.87 kB
Formato
Adobe PDF
|
198.87 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/22052
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo