A standard practice to improve punctuality of railway services is the addition of time reserves in the timetable to recover perturbations occurring in operations. However, time reserves reduce line capacity, and the amount of time reserves that can be inserted in congested areas is, therefore, limited. In this paper, we investigate the new concept of flexible timetable as an effective policy to improve punctuality without decreasing the capacity usage of the lines. The principle of a flexible timetable is to plan less in the timetable and to solve more inter-train conflicts during operations. The larger degree of freedom left to real-time management offers better chance to recover disturbances. We illustrate a detailed model for conflict resolution, based on the alternative graph formulation, and analyze different algorithms for resolving conflicts, based on simple local rules or global optimization. We compare the solutions obtained for different levels of flexibility and buffer time inserted in the timetable. An extensive computational study, based on a bottleneck area of the Dutch railway network, confirms that flexibility is a promising concept to improve train punctuality and to increase the throughput of a railway network.
D'Ariano, A., Pacciarelli, D., Pranzo, M. (2008). Assessment of flexible timetables in real-time traffic management of a railway bottleneck. TRANSPORTATION RESEARCH. PART C, EMERGING TECHNOLOGIES, 16(2), 232-245 [10.1016/j.trc.2007.07.006].
Assessment of flexible timetables in real-time traffic management of a railway bottleneck
PRANZO, MARCO
2008-01-01
Abstract
A standard practice to improve punctuality of railway services is the addition of time reserves in the timetable to recover perturbations occurring in operations. However, time reserves reduce line capacity, and the amount of time reserves that can be inserted in congested areas is, therefore, limited. In this paper, we investigate the new concept of flexible timetable as an effective policy to improve punctuality without decreasing the capacity usage of the lines. The principle of a flexible timetable is to plan less in the timetable and to solve more inter-train conflicts during operations. The larger degree of freedom left to real-time management offers better chance to recover disturbances. We illustrate a detailed model for conflict resolution, based on the alternative graph formulation, and analyze different algorithms for resolving conflicts, based on simple local rules or global optimization. We compare the solutions obtained for different levels of flexibility and buffer time inserted in the timetable. An extensive computational study, based on a bottleneck area of the Dutch railway network, confirms that flexibility is a promising concept to improve train punctuality and to increase the throughput of a railway network.File | Dimensione | Formato | |
---|---|---|---|
2008-TRC.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.26 MB
Formato
Adobe PDF
|
1.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/22039