The volume of the polar body of a symmetric convex set K of R^d is investigated. It is shown that its reciprocal is a convex function of the time t along movements, in which every point of K moves with constant speed parallel to a fixed direction. This result is applied to find reverse forms of the Lp-Blaschke-Santalò inequality for two-dimensional convex sets.
Campi, S., Gronchi, P. (2006). On volume product inequalities for convex sets. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 134(8), 2393-2402 [10.1090/S0002-9939-06-08241-4].
On volume product inequalities for convex sets
CAMPI S.;
2006-01-01
Abstract
The volume of the polar body of a symmetric convex set K of R^d is investigated. It is shown that its reciprocal is a convex function of the time t along movements, in which every point of K moves with constant speed parallel to a fixed direction. This result is applied to find reverse forms of the Lp-Blaschke-Santalò inequality for two-dimensional convex sets.File | Dimensione | Formato | |
---|---|---|---|
Volumeproduct.pdf
non disponibili
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
200.35 kB
Formato
Adobe PDF
|
200.35 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/21948
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo