This paper develops a Lyapunov approach for studying convergence and stability of a class of differential inclusions termed differential variational inequalities (DVIs). The DVIs describe the dynamics of a general system evolving in a compact convex subset of the state space. In particular, they include the dynamics of the full-range (FR) model of cellular neural networks (CNNs), which is characterized by hard-limiter nonlinearities with vertical segments in the i-v characteristic. The approach is based on the following two main tools: 1) a set-valued derivative, which enables to compute the evolution of a Lyapunov function along the solutions of the DVIs without involving integrations, and 2) an extended version of LaSalle's invariance principle, which permits to study the limiting behavior of the solutions with respect to the invariant sets of the DVIs. Then, this paper establishes conditions for convergence (complete stability) of DVIs in the presence of multiple equilibrium points (EPs), global asymptotic stability (GAS), and global exponential stability (GES) of the unique EP. These conditions are applied to investigate convergence, GAS, and GES for FR-CNNs and some extended classes of FR-CNNs. It is shown that, by means of the techniques developed in this paper, the analysis of convergence and stability of FR-CNNs is no more difficult than that of the standard (S)-CNNs. In addition, there are significant cases, such as the symmetric FR-CNNs and the nonsymmetric FR-CNNs with a Lyapunov diagonally stable matrix, where the proof of convergence or global stability is much simpler than that of the S-CNNs.
Di Marco, M., Forti, M., Grazzini, M., Nistri, P., Pancioni, L. (2008). Lyapunov method and convergence of the full-range model of CNNs. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR PAPERS, 55(11), 3528-3541 [10.1109/TCSI.2008.925820].
Lyapunov method and convergence of the full-range model of CNNs
Di Marco M.;Forti M.;Grazzini M.;Nistri P.;Pancioni L.
2008-01-01
Abstract
This paper develops a Lyapunov approach for studying convergence and stability of a class of differential inclusions termed differential variational inequalities (DVIs). The DVIs describe the dynamics of a general system evolving in a compact convex subset of the state space. In particular, they include the dynamics of the full-range (FR) model of cellular neural networks (CNNs), which is characterized by hard-limiter nonlinearities with vertical segments in the i-v characteristic. The approach is based on the following two main tools: 1) a set-valued derivative, which enables to compute the evolution of a Lyapunov function along the solutions of the DVIs without involving integrations, and 2) an extended version of LaSalle's invariance principle, which permits to study the limiting behavior of the solutions with respect to the invariant sets of the DVIs. Then, this paper establishes conditions for convergence (complete stability) of DVIs in the presence of multiple equilibrium points (EPs), global asymptotic stability (GAS), and global exponential stability (GES) of the unique EP. These conditions are applied to investigate convergence, GAS, and GES for FR-CNNs and some extended classes of FR-CNNs. It is shown that, by means of the techniques developed in this paper, the analysis of convergence and stability of FR-CNNs is no more difficult than that of the standard (S)-CNNs. In addition, there are significant cases, such as the symmetric FR-CNNs and the nonsymmetric FR-CNNs with a Lyapunov diagonally stable matrix, where the proof of convergence or global stability is much simpler than that of the S-CNNs.File | Dimensione | Formato | |
---|---|---|---|
TCAS1-08_LYAPUNOV METHOD AND CONVERGENCE OF THE FULL-RANGE MODEL OF CNNS.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
960.37 kB
Formato
Adobe PDF
|
960.37 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/21345
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo