We develop tools to study the problem of containment of symbolic powers I^(m) in powers I^r for a homogeneous ideal I in a polynomial ring k[PN] in N + 1 variables over an arbitrary algebraically closed field k. We obtain results on the structure of the set of pairs (r, m) such that I^(m) is contained in I^r. As corollaries, we show that I^2 contains I^(3) whenever S is a finite generic set of points in P^2 (thereby giving a partial answer to a question of Huneke), and we show that the containment theorems of Ein-Lazarsfeld-Smith [Invent. Math. 144 (2001), pp. 241-252] and Hochster-Huneke [Invent. Math. 147 (2002), pp. 349-369] are optimal for every fixed dimension and codimension.

Bocci, C., Harbourne, B. (2010). Comparing powers and symbolic powers of ideals. JOURNAL OF ALGEBRAIC GEOMETRY, 19(3), 399-417.

Comparing powers and symbolic powers of ideals

BOCCI, CRISTIANO;
2010-01-01

Abstract

We develop tools to study the problem of containment of symbolic powers I^(m) in powers I^r for a homogeneous ideal I in a polynomial ring k[PN] in N + 1 variables over an arbitrary algebraically closed field k. We obtain results on the structure of the set of pairs (r, m) such that I^(m) is contained in I^r. As corollaries, we show that I^2 contains I^(3) whenever S is a finite generic set of points in P^2 (thereby giving a partial answer to a question of Huneke), and we show that the containment theorems of Ein-Lazarsfeld-Smith [Invent. Math. 144 (2001), pp. 241-252] and Hochster-Huneke [Invent. Math. 147 (2002), pp. 349-369] are optimal for every fixed dimension and codimension.
2010
Bocci, C., Harbourne, B. (2010). Comparing powers and symbolic powers of ideals. JOURNAL OF ALGEBRAIC GEOMETRY, 19(3), 399-417.
File in questo prodotto:
File Dimensione Formato  
jag530.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 279.96 kB
Formato Adobe PDF
279.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/21209
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo