Let T be a self-adjoint bounded operator acting in a real Hilbert space H, and denote by S the unit sphere of H. Assume that is an isolated eigenvalue of T of odd multiplicity greater than 1. Given an arbitrary operator B:H ! H of class C1, we prove that for any sufficiently small there exists such that Tx" C "B.x". This result was conjectured, but not proved, in a previous article by the authors.We provide an example showing that the assumption that the multiplicity of 0 is odd cannot be removed.
Scheda prodotto non validato
Scheda prodotto in fase di analisi da parte dello staff di validazione
Utilizza questo identificativo per citare o creare un link a questo documento:
http://hdl.handle.net/11365/21090
Titolo: | Topological persistence of the normalized eigenvectors of a perturbed self-adjoint operator |
Autori: | |
Anno: | 2010 |
Rivista: | |
Abstract: | Let T be a self-adjoint bounded operator acting in a real Hilbert space H, and denote by S the unit sphere of H. Assume that is an isolated eigenvalue of T of odd multiplicity greater than 1. Given an arbitrary operator B:H ! H of class C1, we prove that for any sufficiently small there exists such that Tx" C "B.x". This result was conjectured, but not proved, in a previous article by the authors.We provide an example showing that the assumption that the multiplicity of 0 is odd cannot be removed. |
Handle: | http://hdl.handle.net/11365/21090 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
110285_UPLOAD.pdf | Altro | NON PUBBLICO - Accesso privato/ristretto | Administrator Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.