Let T be a weighted tree with n numbered leaves and let D = (D (i, j))i, j be its distance matrix, so D (i, j) is the distance between the leaves i and j. If m is an integer satisfying 2 ≤ m ≤ n, we prove a tropical formula to compute the m-dissimilarity map of T (i.e. the weights of the subtrees of T with m leaves), given D. For m = 3, we present a tropical description of the set of m-dissimilarity maps of trees. For m = 4, a partial result is given.
Bocci, C., Cools, F. (2009). A tropical interpretation of m-dissimilarity maps. APPLIED MATHEMATICS AND COMPUTATION, 212(2), 349-356 [10.1016/j.amc.2009.02.031].
A tropical interpretation of m-dissimilarity maps
BOCCI, CRISTIANO;
2009-01-01
Abstract
Let T be a weighted tree with n numbered leaves and let D = (D (i, j))i, j be its distance matrix, so D (i, j) is the distance between the leaves i and j. If m is an integer satisfying 2 ≤ m ≤ n, we prove a tropical formula to compute the m-dissimilarity map of T (i.e. the weights of the subtrees of T with m leaves), given D. For m = 3, we present a tropical description of the set of m-dissimilarity maps of trees. For m = 4, a partial result is given.File | Dimensione | Formato | |
---|---|---|---|
Bocci-Cools.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
201.39 kB
Formato
Adobe PDF
|
201.39 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/21087
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo