Reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the pathogenesis and/or progression of several human diseases. Proteins are important molecular signposts of oxidative/nitrosative damage. However, it is generally unresolved whether the presence of oxidatively/nitrosatively modified proteins has a causal role or simply reflects secondary epiphenomena. Only direct identification and characterization of the modified protein(s) in a given pathophysiological condition can decipher the potential roles played by ROS/RNS-induced protein modifications. During the last few years, mass spectrometry (MS)-based technologies have contributed in a significant way to foster a better understanding of disease processes. The study of oxidative/nitrosative modifications, investigated by redox proteomics, is contributing to establish a relationship between pathological hallmarks of disease and protein structural and functional abnormalities. MS-based technologies promise a contribution in a new era of molecular medicine, especially in the discovery of diagnostic biomarkers of oxidative/nitrosative stress, enabling early detection of diseases. Indeed, identification and characterization of oxidatively/nitrosatively modified proteins in human diseases has just begun.

DALLE-DONNE, I., Scaloni, A., Giustarini, D., Cavarra, E., Tell, G., Lungarella, G., et al. (2005). Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. MASS SPECTROMETRY REVIEWS, 24(1), 55-99 [10.1002/mas.20006].

Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics

GIUSTARINI, D.;CAVARRA, E.;LUNGARELLA, G.;
2005-01-01

Abstract

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) contribute to the pathogenesis and/or progression of several human diseases. Proteins are important molecular signposts of oxidative/nitrosative damage. However, it is generally unresolved whether the presence of oxidatively/nitrosatively modified proteins has a causal role or simply reflects secondary epiphenomena. Only direct identification and characterization of the modified protein(s) in a given pathophysiological condition can decipher the potential roles played by ROS/RNS-induced protein modifications. During the last few years, mass spectrometry (MS)-based technologies have contributed in a significant way to foster a better understanding of disease processes. The study of oxidative/nitrosative modifications, investigated by redox proteomics, is contributing to establish a relationship between pathological hallmarks of disease and protein structural and functional abnormalities. MS-based technologies promise a contribution in a new era of molecular medicine, especially in the discovery of diagnostic biomarkers of oxidative/nitrosative stress, enabling early detection of diseases. Indeed, identification and characterization of oxidatively/nitrosatively modified proteins in human diseases has just begun.
2005
DALLE-DONNE, I., Scaloni, A., Giustarini, D., Cavarra, E., Tell, G., Lungarella, G., et al. (2005). Proteins as biomarkers of oxidative/nitrosative stress in diseases: the contribution of redox proteomics. MASS SPECTROMETRY REVIEWS, 24(1), 55-99 [10.1002/mas.20006].
File in questo prodotto:
File Dimensione Formato  
Dalle Donne 2005.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/21019
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo