We have investigated the subcellular spontaneous Ca2+ events in canine Purkinje cells using laser scanning confocal microscopy. Three types of Ca2+ transient were found: (1) nonpropagating Ca2+ transients that originate directly under the sarcolemma and lead to (2) small Ca2+ wavelets in a region limited to 6-microm depth under the sarcolemma causing (3) large Ca2+ waves that travel throughout the cell (CWWs). Immunocytochemical studies revealed 3 layers of Ca2+ channels: (1) channels associated with type 1 IP3 receptors (IP3R1) and type 3 ryanodine receptors (RyR3) are prominent directly under the sarcolemma; (2) type 2 ryanodine receptors (RyR2s) are present throughout the cell but virtually absent in a layer between 2 and 4 microm below the sarcolemma (Sub-SL); (3) type 3 ryanodine receptors (RyR3) is the dominant Ca2+ release channel in the Sub-SL. Simulations of both nonpropagating and propagating transients show that the generators of Ca2+ wavelets differ from those of the CWWs with the threshold of the former being less than that of the latter. Thus, Purkinje cells contain a functional and structural Ca2+ system responsible for the mechanism that translates Ca2+ release occurring directly under the sarcolemma into rapid Ca2+ release in the Sub-SL, which then initiates large-amplitude long lasting Ca2+ releases underlying CWWs. The sequence of spontaneous diastolic Ca2+ transients that starts directly under the sarcolemma and leads to Ca2+ wavelets and CWWs is important because CWWs have been shown to cause nondriven electrical activity.

Stuyvers, B.D., Dun, W., Matkovich, S., Sorrentino, V., Boyden, P.A., ter Keurs, H.E. (2005). Ca2+ sparks and waves in canine purkinje cells: a triple layered system of Ca2+ activation. CIRCULATION RESEARCH, 97(1), 35-43 [10.1161/01.RES.0000173375.26489.fe].

Ca2+ sparks and waves in canine purkinje cells: a triple layered system of Ca2+ activation

Sorrentino, V.;
2005-01-01

Abstract

We have investigated the subcellular spontaneous Ca2+ events in canine Purkinje cells using laser scanning confocal microscopy. Three types of Ca2+ transient were found: (1) nonpropagating Ca2+ transients that originate directly under the sarcolemma and lead to (2) small Ca2+ wavelets in a region limited to 6-microm depth under the sarcolemma causing (3) large Ca2+ waves that travel throughout the cell (CWWs). Immunocytochemical studies revealed 3 layers of Ca2+ channels: (1) channels associated with type 1 IP3 receptors (IP3R1) and type 3 ryanodine receptors (RyR3) are prominent directly under the sarcolemma; (2) type 2 ryanodine receptors (RyR2s) are present throughout the cell but virtually absent in a layer between 2 and 4 microm below the sarcolemma (Sub-SL); (3) type 3 ryanodine receptors (RyR3) is the dominant Ca2+ release channel in the Sub-SL. Simulations of both nonpropagating and propagating transients show that the generators of Ca2+ wavelets differ from those of the CWWs with the threshold of the former being less than that of the latter. Thus, Purkinje cells contain a functional and structural Ca2+ system responsible for the mechanism that translates Ca2+ release occurring directly under the sarcolemma into rapid Ca2+ release in the Sub-SL, which then initiates large-amplitude long lasting Ca2+ releases underlying CWWs. The sequence of spontaneous diastolic Ca2+ transients that starts directly under the sarcolemma and leads to Ca2+ wavelets and CWWs is important because CWWs have been shown to cause nondriven electrical activity.
2005
Stuyvers, B.D., Dun, W., Matkovich, S., Sorrentino, V., Boyden, P.A., ter Keurs, H.E. (2005). Ca2+ sparks and waves in canine purkinje cells: a triple layered system of Ca2+ activation. CIRCULATION RESEARCH, 97(1), 35-43 [10.1161/01.RES.0000173375.26489.fe].
File in questo prodotto:
File Dimensione Formato  
Stuyvers Circ. Research 2005.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/20804
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo