The results of a survey aimed at testing the hypothesis that the lichen Evernia prunastri, when transplanted in an agricultural area with high atmospheric NH(3) concentrations, would respond to NH(3) air pollution accumulating nitrogen in its thalli and showing changes in the concentration of assimilation pigments are presented. The results confirmed the hypothesis and showed that all lichen transplants accumulated nitrogen, suggesting that besides the release of atmospheric ammonia by animal stockfarms, the use of N-based fertilizers and the deposition of N-rich dust also may contribute to the high nitrogen availability to lichens in the study area. The result indicated that in the study area both the critical level of NH(3) and the critical load of N for lichens are exceeded and physiological damage is to be expected in sensitive species. The results of assimilation pigments in E. prunastri, with a decrease in the concentration of chlorophylls a and b and carotenoids, as well as chlorophyll degradation to phaeophytin, confirmed this hypothesis. However, owing to the limited data set and pending further studies, these conclusions should be considered as limited to the study area.
L., F., G., B., S., G., A., P., S., R., Loppi, S. (2011). Accumulation of nitrogen and changes in assimilation pigments of lichens transplanted in an agricultural area. ENVIRONMENTAL MONITORING AND ASSESSMENT, 178, 19-24 [10.1007/s10661-010-1667-1].
Accumulation of nitrogen and changes in assimilation pigments of lichens transplanted in an agricultural area
LOPPI, STEFANO
2011-01-01
Abstract
The results of a survey aimed at testing the hypothesis that the lichen Evernia prunastri, when transplanted in an agricultural area with high atmospheric NH(3) concentrations, would respond to NH(3) air pollution accumulating nitrogen in its thalli and showing changes in the concentration of assimilation pigments are presented. The results confirmed the hypothesis and showed that all lichen transplants accumulated nitrogen, suggesting that besides the release of atmospheric ammonia by animal stockfarms, the use of N-based fertilizers and the deposition of N-rich dust also may contribute to the high nitrogen availability to lichens in the study area. The result indicated that in the study area both the critical level of NH(3) and the critical load of N for lichens are exceeded and physiological damage is to be expected in sensitive species. The results of assimilation pigments in E. prunastri, with a decrease in the concentration of chlorophylls a and b and carotenoids, as well as chlorophyll degradation to phaeophytin, confirmed this hypothesis. However, owing to the limited data set and pending further studies, these conclusions should be considered as limited to the study area.File | Dimensione | Formato | |
---|---|---|---|
nitrogen_braccagni.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
263.29 kB
Formato
Adobe PDF
|
263.29 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/20748
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo