We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic-Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to ~10^14 eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an E –2.66 ± 0.04 power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/n energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be 0.080 ± 0.025 (stat.)±0.025 (sys.) at ~800 GeV/n, in good agreement with a recent result from the first CREAM flight.
Ahn, H.S., Allison, P., Bagliesi, M.G., Barbier, L., Beatty, J.J., Bigongiari, G., et al. (2009). Energy spectra of cosmic-ray nuclei at high energies. THE ASTROPHYSICAL JOURNAL, 707(1), 593-603 [10.1088/0004-637X/707/1/593].
Energy spectra of cosmic-ray nuclei at high energies
BAGLIESI, MARIA GRAZIA;BIGONGIARI, GABRIELE;MAESTRO, PAOLO;MARROCCHESI, PIER SIMONE;
2009-01-01
Abstract
We present new measurements of the energy spectra of cosmic-ray (CR) nuclei from the second flight of the balloon-borne experiment Cosmic-Ray Energetics And Mass (CREAM). The instrument included different particle detectors to provide redundant charge identification and measure the energy of CRs up to several hundred TeV. The measured individual energy spectra of C, O, Ne, Mg, Si, and Fe are presented up to ~10^14 eV. The spectral shape looks nearly the same for these primary elements and it can be fitted to an E –2.66 ± 0.04 power law in energy. Moreover, a new measurement of the absolute intensity of nitrogen in the 100-800 GeV/n energy range with smaller errors than previous observations, clearly indicates a hardening of the spectrum at high energy. The relative abundance of N/O at the top of the atmosphere is measured to be 0.080 ± 0.025 (stat.)±0.025 (sys.) at ~800 GeV/n, in good agreement with a recent result from the first CREAM flight.File | Dimensione | Formato | |
---|---|---|---|
apj_707_1_593.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
513.89 kB
Formato
Adobe PDF
|
513.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/20583
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo