Abstract. The projection body of order one of a convex body K in R^n is the body whose support function is, up to a constant, the average mean width of the orthogonal projections of K onto hyperplanes through the origin. The paper contains an inequality for the support function of the projection body of order one of K which implies in particular that such a function is strictly convex, unless K has dimension one or two. Furthermore, an existence problem related to the reconstruction of a convex body is discussed to highlight the different behavior of the area measures of order one and of order n − 1.

Campi, S., Gronchi, P. (2009). On projection bodies of order one. CANADIAN MATHEMATICAL BULLETIN, 52(3), 349-360 [10.4153/CMB-2009-038-6].

On projection bodies of order one

CAMPI S.;
2009-01-01

Abstract

Abstract. The projection body of order one of a convex body K in R^n is the body whose support function is, up to a constant, the average mean width of the orthogonal projections of K onto hyperplanes through the origin. The paper contains an inequality for the support function of the projection body of order one of K which implies in particular that such a function is strictly convex, unless K has dimension one or two. Furthermore, an existence problem related to the reconstruction of a convex body is discussed to highlight the different behavior of the area measures of order one and of order n − 1.
2009
Campi, S., Gronchi, P. (2009). On projection bodies of order one. CANADIAN MATHEMATICAL BULLETIN, 52(3), 349-360 [10.4153/CMB-2009-038-6].
File in questo prodotto:
File Dimensione Formato  
Lavoro TED.pdf

non disponibili

Tipologia: Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 219.94 kB
Formato Adobe PDF
219.94 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/20440
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo