Background: The occurrence of familial papillary thyroid cancer (FPTC) is well established but no susceptibility genes for this disease have been discovered. Our group has recently demonstrated that patients with FPTC have shorter telomeres, not associated with mutations in telomerase reverse transcriptase, gene than patients with sporadic papillary thyroid cancer (SPTC), healthy subjects (HS), and unaffected family members (UFMs). Several diseases, however, have short telomeres associated with mutations in the telomerase RNA component (TERC) gene or in the shelterin complex (POT1, RAP1, TIN2, TPP1, TRF1, and TRF2) genes. The objective of the present study was to verify whether short telomeres observed in FPTC patients were related to mutations in TERC or shelterin genes. Methods: Sixty-six patients with FPTC, 46 UFMs, 111 patients with SPTC, and 153 HS were analyzed by polymerase chain reaction followed by denaturing high performance liquid chromatography analysis and direct sequencing for the presence of TERC or shelterin gene mutations. When present, single-nucleotide polymorphisms were tested by v chi(2) analysis at the genotypic, allelic, and haplotypic levels. Results: The entire sequence of the TERC gene was analyzed with particular attention to known mutations known to be associated with short telomeres. All samples appeared to be homozygous wild type for A-771G, C-99G, G305A, G322A, C323T, C408G, G450A, T467C, G508A, A514G, G623A, and C727G substitutions and for the 378 Delta -> 3' deletion in the TERC gene. In addition, upon analysis of all samples for shelterin proteins, we observed a significant decrease in POT1 and RAP1 protein expression in the blood of FPTC patients compared with SPTC subjects. However, no mutations or polymorphisms were found when in the coding sequences of both genes. Conclusions: To our knowledge this is the first study of TERC mutations or alterations in the shelterin complex in relation to FPTC. Shorter telomeres observed in FPTC are not linked to mutations or polymorphisms in TERC, POT1, or RAP1 genes.
Cantara, S., Capuano, S., Capezzone, M., Benigni, M., Pisu, M., Marchisotta, S., et al. (2012). Lack of Mutations of the Telomerase RNA Component in Familial Papillary Thyroid Cancer with Short Telomeres. THYROID, 22(4), 363-368 [10.1089/thy.2011.0109].
Lack of Mutations of the Telomerase RNA Component in Familial Papillary Thyroid Cancer with Short Telomeres
Cantara S.;Pacini F.
2012-01-01
Abstract
Background: The occurrence of familial papillary thyroid cancer (FPTC) is well established but no susceptibility genes for this disease have been discovered. Our group has recently demonstrated that patients with FPTC have shorter telomeres, not associated with mutations in telomerase reverse transcriptase, gene than patients with sporadic papillary thyroid cancer (SPTC), healthy subjects (HS), and unaffected family members (UFMs). Several diseases, however, have short telomeres associated with mutations in the telomerase RNA component (TERC) gene or in the shelterin complex (POT1, RAP1, TIN2, TPP1, TRF1, and TRF2) genes. The objective of the present study was to verify whether short telomeres observed in FPTC patients were related to mutations in TERC or shelterin genes. Methods: Sixty-six patients with FPTC, 46 UFMs, 111 patients with SPTC, and 153 HS were analyzed by polymerase chain reaction followed by denaturing high performance liquid chromatography analysis and direct sequencing for the presence of TERC or shelterin gene mutations. When present, single-nucleotide polymorphisms were tested by v chi(2) analysis at the genotypic, allelic, and haplotypic levels. Results: The entire sequence of the TERC gene was analyzed with particular attention to known mutations known to be associated with short telomeres. All samples appeared to be homozygous wild type for A-771G, C-99G, G305A, G322A, C323T, C408G, G450A, T467C, G508A, A514G, G623A, and C727G substitutions and for the 378 Delta -> 3' deletion in the TERC gene. In addition, upon analysis of all samples for shelterin proteins, we observed a significant decrease in POT1 and RAP1 protein expression in the blood of FPTC patients compared with SPTC subjects. However, no mutations or polymorphisms were found when in the coding sequences of both genes. Conclusions: To our knowledge this is the first study of TERC mutations or alterations in the shelterin complex in relation to FPTC. Shorter telomeres observed in FPTC are not linked to mutations or polymorphisms in TERC, POT1, or RAP1 genes.File | Dimensione | Formato | |
---|---|---|---|
lack of.pdf
non disponibili
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
188.34 kB
Formato
Adobe PDF
|
188.34 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/20345
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo