Characterization of $\Sigma_1$-formulas with a binary operator interpreted as interpretability in finitely axiomatizable extensions of the theory $I\Delta_0+Superexp$ and some purposes concerning $I\Delta_0+exp$. In Provability Logic and in Interpretability Logic, More precisely: \begin{definition} (See [DJP]) Let $\mathbf{L}_0$ be a logic with a collection of arithmetical interpretations into an r.e. extension $\bT$ of ${\bf I\Delta_0+Supexp}$. We say that a formula $A$ is \emph{essentially} $\Sigma_1$ with respect to $\bT$, if $A^{\star}$ is provably equivalent to a $\Sigma_1$ formula for \emph{any} arithmetical interpretation $^\star$ of $\mathbf{L}_0$ in $\bT$.\end{definitionn} [DPJ] De Jongh and Pianigiani obtained some results relative to the system ${\bf R}$, with reference to any r.e. $\Sigma_1$-sound extension of ${\bf I \Sigma_1}$. In this note we show that a characterization of this kind can be obtained also for formulas of the logic ${\bf ILP}$ (cf [V1]), with respect to any finitely axiomatizable $\Sigma_1$-sound extension of ${\bf I\Delta_0 + Supexp}$.
Montagna, F., Pianigiani, D. (2012). A short note on essentially $\Sigma_1$ sentences (revised and extendend version). LOGICA UNIVERSALIS, March 2013, Volume 7, Issue 1, pp 103–111 [10.1007/s11787-012-0070-9].
A short note on essentially $\Sigma_1$ sentences (revised and extendend version)
MONTAGNA, FRANCO;PIANIGIANI, DUCCIO
2012-01-01
Abstract
Characterization of $\Sigma_1$-formulas with a binary operator interpreted as interpretability in finitely axiomatizable extensions of the theory $I\Delta_0+Superexp$ and some purposes concerning $I\Delta_0+exp$. In Provability Logic and in Interpretability Logic, More precisely: \begin{definition} (See [DJP]) Let $\mathbf{L}_0$ be a logic with a collection of arithmetical interpretations into an r.e. extension $\bT$ of ${\bf I\Delta_0+Supexp}$. We say that a formula $A$ is \emph{essentially} $\Sigma_1$ with respect to $\bT$, if $A^{\star}$ is provably equivalent to a $\Sigma_1$ formula for \emph{any} arithmetical interpretation $^\star$ of $\mathbf{L}_0$ in $\bT$.\end{definitionn} [DPJ] De Jongh and Pianigiani obtained some results relative to the system ${\bf R}$, with reference to any r.e. $\Sigma_1$-sound extension of ${\bf I \Sigma_1}$. In this note we show that a characterization of this kind can be obtained also for formulas of the logic ${\bf ILP}$ (cf [V1]), with respect to any finitely axiomatizable $\Sigma_1$-sound extension of ${\bf I\Delta_0 + Supexp}$.File | Dimensione | Formato | |
---|---|---|---|
logicauniversalisdefinit.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
205.85 kB
Formato
Adobe PDF
|
205.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
articoloLU.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
223.22 kB
Formato
Adobe PDF
|
223.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
DUCCIO.pdf
non disponibili
Tipologia:
Altro materiale allegato
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
207.17 kB
Formato
Adobe PDF
|
207.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/20275
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo