We consider a nonsmooth bifurcation equation depending on a small parameter ε > 0. In Theorem 1 we provide conditions ensuring the existence of branches of solutions, smoothly depending on ε, emanating from a curve of solutions of the bifurcation equation when ε = 0. Several examples will illustrate the different types of bifurcation that occur in the present nonsmooth case. © 2012 Foundation for Scientific Research and Technological Innovation.
Kamenskii, M., Mikhaylenko, B., Nistri, P. (2012). Nonsmooth bifurcation problems in finite dimensional spaces via scaling of variables. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 20(3), 191-205 [10.1007/s12591-011-0102-6].
Nonsmooth bifurcation problems in finite dimensional spaces via scaling of variables
Nistri, Paolo
2012-01-01
Abstract
We consider a nonsmooth bifurcation equation depending on a small parameter ε > 0. In Theorem 1 we provide conditions ensuring the existence of branches of solutions, smoothly depending on ε, emanating from a curve of solutions of the bifurcation equation when ε = 0. Several examples will illustrate the different types of bifurcation that occur in the present nonsmooth case. © 2012 Foundation for Scientific Research and Technological Innovation.| File | Dimensione | Formato | |
|---|---|---|---|
|
44349-U-GOV.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
469.84 kB
Formato
Adobe PDF
|
469.84 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/20268
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
