We prove upper and lower bounds on the eigenvalues and discuss their asymptotic behaviour (as the norm of the eigenvector tends to zero) in bifurcation problems from the line of trivial solutions, considering perturbations of linear self-adjoint operators in a Hilbert space. The proofs are based on the Lyapounov–Schmidt reduction. The results are applied to a class of semilinear elliptic operators in bounded domains of RN and in particular to Sturm–Liouville operators.

Chiappinelli, R. (2009). A-priori bounds and asymptotics on the eigenvalues in bifurcation problems for perturbed self-adjoint operators. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 354(1), 263-272 [10.1016/j.jmaa.2008.12.061].

A-priori bounds and asymptotics on the eigenvalues in bifurcation problems for perturbed self-adjoint operators

CHIAPPINELLI R.
2009-01-01

Abstract

We prove upper and lower bounds on the eigenvalues and discuss their asymptotic behaviour (as the norm of the eigenvector tends to zero) in bifurcation problems from the line of trivial solutions, considering perturbations of linear self-adjoint operators in a Hilbert space. The proofs are based on the Lyapounov–Schmidt reduction. The results are applied to a class of semilinear elliptic operators in bounded domains of RN and in particular to Sturm–Liouville operators.
2009
Chiappinelli, R. (2009). A-priori bounds and asymptotics on the eigenvalues in bifurcation problems for perturbed self-adjoint operators. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 354(1), 263-272 [10.1016/j.jmaa.2008.12.061].
File in questo prodotto:
File Dimensione Formato  
110264_UPLOAD.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 199.73 kB
Formato Adobe PDF
199.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/19548
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo