Allyl alcohol administration in a toxic dose (1.5 mmol/kg) to starved mice causes the development of hemolysis in nearly 50% of the animals. Malonic dialdehyde (MDA) appears in plasma of the animals showing hemolysis. The treatment of mice with desferrioxamine after allyl alcohol intoxication completely prevents lipid peroxidation and hemolysis, suggesting the involvement of iron in the allyl alcohol-induced erythrocyte damage. Erythrocytes obtained from intoxicated mice before the development of hemolysis show, upon incubation, release of iron, lipid peroxidation and lysis. Studies carried out with reconstituted systems of erythrocyte lysates, containing ghosts and different fractions of erythrocyte cytosol and incubated in the presence of acrolein (the major metabolite of allyl alcohol), strongly suggest that iron is released from hemoglobin. This iron appears to promote lipid peroxidation which is accompanied by erythrocyte lysis. Thus, the allyl alcohol-induced hemolysis appears to be a model for iron delocalization from iron stores.
Ferrali, M., Ciccoli, L., Signorini, C., Comporti, M. (1990). Iron release and erythrocyte damage in allyl alcohol intoxication in mice. BIOCHEMICAL PHARMACOLOGY, 40(7), 1485-1490 [10.1016/0006-2952(90)90444-P].
Iron release and erythrocyte damage in allyl alcohol intoxication in mice
CICCOLI, LUCIA;SIGNORINI, CINZIA;
1990-01-01
Abstract
Allyl alcohol administration in a toxic dose (1.5 mmol/kg) to starved mice causes the development of hemolysis in nearly 50% of the animals. Malonic dialdehyde (MDA) appears in plasma of the animals showing hemolysis. The treatment of mice with desferrioxamine after allyl alcohol intoxication completely prevents lipid peroxidation and hemolysis, suggesting the involvement of iron in the allyl alcohol-induced erythrocyte damage. Erythrocytes obtained from intoxicated mice before the development of hemolysis show, upon incubation, release of iron, lipid peroxidation and lysis. Studies carried out with reconstituted systems of erythrocyte lysates, containing ghosts and different fractions of erythrocyte cytosol and incubated in the presence of acrolein (the major metabolite of allyl alcohol), strongly suggest that iron is released from hemoglobin. This iron appears to promote lipid peroxidation which is accompanied by erythrocyte lysis. Thus, the allyl alcohol-induced hemolysis appears to be a model for iron delocalization from iron stores.File | Dimensione | Formato | |
---|---|---|---|
Biochem Pharmacol 1990.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/19483
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo