The movement of pollen tube organelles relies on cytoskeletal elements. Although the movement of organelles along actin filaments in the pollen tube has been studied widely and is becoming progressively clear, it remains unclear what role microtubules play. Many uncertainties about the role of microtubules in the active transport of pollen tube organelles and/or in the control of this process remain to be resolved. In an effort to determine if organelles are capable of moving along microtubules in the absence of actin, we extracted organelles from tobacco pollen tubes and analyzed their ability to move along in vitro–polymerized microtubules under different experimental conditions. Regardless of their size, the organelles moved at different rates along microtubules in the presence of ATP. Cytochalasin D did not inhibit organelle movement, indicating that actin filaments are not required for organelle transport in our assay. The movement of organelles was cytosol independent, which suggests that soluble factors are not necessary for the organelle movement to occur and that microtubule-based motor proteins are present on the organelle surface. By washing organelles with KI, it was possible to release proteins capable of gliding carboxylated beads along microtubules. Several membrane fractions, which were separated by Suc density gradient centrifugation, showed microtubule-based movement. Proteins were extracted by KI treatment from the most active organelle fraction and then analyzed with an ATP-sensitive microtubule binding assay. Proteins isolated by the selective binding to microtubules were tested for the ability to glide microtubules in the in vitro motility assay, for the presence of microtubule-stimulated ATPase activity, and for cross-reactivity with anti-kinesin antibodies. We identified and characterized a 105-kD organelle-associated motor protein that is functionally, biochemically, and immunologically related to kinesin. This work provides clear evidence that the movement of pollen tube organelles is not just actin based; rather, they show a microtubule-based motion as well. This unexpected finding suggests new insights into the use of pollen tube microtubules, which could be used for short-range transport, as actin filaments are in animal cells.
Romagnoli, S., Cai, G., Cresti, M. (2003). In vitro assays demonstrate that pollen tube organelles use kinesin-related motor proteins to move along microtubules. PLANT CELL, 15(1), 251-269 [10.1105/tpc.005645].
In vitro assays demonstrate that pollen tube organelles use kinesin-related motor proteins to move along microtubules
ROMAGNOLI, SILVIA;CAI, GIAMPIERO;CRESTI, MAURO
2003-01-01
Abstract
The movement of pollen tube organelles relies on cytoskeletal elements. Although the movement of organelles along actin filaments in the pollen tube has been studied widely and is becoming progressively clear, it remains unclear what role microtubules play. Many uncertainties about the role of microtubules in the active transport of pollen tube organelles and/or in the control of this process remain to be resolved. In an effort to determine if organelles are capable of moving along microtubules in the absence of actin, we extracted organelles from tobacco pollen tubes and analyzed their ability to move along in vitro–polymerized microtubules under different experimental conditions. Regardless of their size, the organelles moved at different rates along microtubules in the presence of ATP. Cytochalasin D did not inhibit organelle movement, indicating that actin filaments are not required for organelle transport in our assay. The movement of organelles was cytosol independent, which suggests that soluble factors are not necessary for the organelle movement to occur and that microtubule-based motor proteins are present on the organelle surface. By washing organelles with KI, it was possible to release proteins capable of gliding carboxylated beads along microtubules. Several membrane fractions, which were separated by Suc density gradient centrifugation, showed microtubule-based movement. Proteins were extracted by KI treatment from the most active organelle fraction and then analyzed with an ATP-sensitive microtubule binding assay. Proteins isolated by the selective binding to microtubules were tested for the ability to glide microtubules in the in vitro motility assay, for the presence of microtubule-stimulated ATPase activity, and for cross-reactivity with anti-kinesin antibodies. We identified and characterized a 105-kD organelle-associated motor protein that is functionally, biochemically, and immunologically related to kinesin. This work provides clear evidence that the movement of pollen tube organelles is not just actin based; rather, they show a microtubule-based motion as well. This unexpected finding suggests new insights into the use of pollen tube microtubules, which could be used for short-range transport, as actin filaments are in animal cells.File | Dimensione | Formato | |
---|---|---|---|
8032.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
460.99 kB
Formato
Adobe PDF
|
460.99 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/19205