In this paper we present a predator-prey mathematical model for two biological populations which dislike crowding. The model consists of a system of two degenerate parabolic equations with nonlocal terms and drifts. We provide conditions on the system ensuring the periodic coexistence, namely the existence of two non-trivial non-negative periodic solutions representing the densities of the two populations. We assume that the predator species is harvested if its density exceeds a given threshold. A minimization problem for a cost functional associated with this process and with some other significant parameters of the model is also considered. © 2010 Elsevier Inc.

Allegretto, W., Fragnelli, G., Nistri, P., Papini, D. (2011). Coexistence and optimal control problems for a degenerate predator-prey model. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 378(2), 528-540 [10.1016/j.jmaa.2010.12.036].

Coexistence and optimal control problems for a degenerate predator-prey model

Fragnelli G.;Nistri P.;Papini D.
2011-01-01

Abstract

In this paper we present a predator-prey mathematical model for two biological populations which dislike crowding. The model consists of a system of two degenerate parabolic equations with nonlocal terms and drifts. We provide conditions on the system ensuring the periodic coexistence, namely the existence of two non-trivial non-negative periodic solutions representing the densities of the two populations. We assume that the predator species is harvested if its density exceeds a given threshold. A minimization problem for a cost functional associated with this process and with some other significant parameters of the model is also considered. © 2010 Elsevier Inc.
2011
Allegretto, W., Fragnelli, G., Nistri, P., Papini, D. (2011). Coexistence and optimal control problems for a degenerate predator-prey model. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 378(2), 528-540 [10.1016/j.jmaa.2010.12.036].
File in questo prodotto:
File Dimensione Formato  
102826_UPLOAD.pdf

non disponibili

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 220.66 kB
Formato Adobe PDF
220.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/18900
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo