We give a geometrical description of the spin-embedding esp of the symplectic dual polar space Δ ≅ DW (5, 2r) by showing how the natural embedding of W (5, 2r) into PG (5, 2r) is involved in the Grassmann-embedding egr of Δ. We prove that the map sending every quad of Δ to its nucleus realizes the natural embedding of W (5, 2r). Taking the quotient of egr over the space spanned by the nuclei of the quadrics corresponding to the quads of Δ gives an embedding isomorphic to esp. © 2007 Elsevier Inc. All rights reserved.
Cardinali, I., Lunardon, G. (2008). A geometric description of the spin-embedding of symplectic dual polar spaces of rank 3. JOURNAL OF COMBINATORIAL THEORY. SERIES A, 115(6), 1056-1064 [10.1016/j.jcta.2007.09.004].
A geometric description of the spin-embedding of symplectic dual polar spaces of rank 3
Cardinali I.;
2008-01-01
Abstract
We give a geometrical description of the spin-embedding esp of the symplectic dual polar space Δ ≅ DW (5, 2r) by showing how the natural embedding of W (5, 2r) into PG (5, 2r) is involved in the Grassmann-embedding egr of Δ. We prove that the map sending every quad of Δ to its nucleus realizes the natural embedding of W (5, 2r). Taking the quotient of egr over the space spanned by the nuclei of the quadrics corresponding to the quads of Δ gives an embedding isomorphic to esp. © 2007 Elsevier Inc. All rights reserved.File | Dimensione | Formato | |
---|---|---|---|
YJCTA3853.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
325.24 kB
Formato
Adobe PDF
|
325.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/18562
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo