We give a geometrical description of the spin-embedding $e_{sp}$ of the symplectic dual polar space $\Delta\cong DW(5,2^r)$ by showing how the natural embedding of $W(5,2^r)$ into $\PG(5,2^r)$ is involved in the Grassman-embedding $e_{gr}$ of $\Delta.$ We prove that the map sending every quad of $\Delta$ to its nucleus realizes the natural embedding of $W(5,2^r).$ Taking the quotient of $e_{gr}$ over the space spanned by the nuclei of the quadrics corresponding to the quads of $\Delta$ gives an embedding isomorphic to $e_{sp}.$
Cardinali, I., Lunardon, (2008). A geometric description of the spin-embedding of symplectic dual polar spaces of rank 3. JOURNAL OF COMBINATORIAL THEORY. SERIES A, 115, 1056-1064 [10.1016/j.jcta.2007.09.004].
A geometric description of the spin-embedding of symplectic dual polar spaces of rank 3
CARDINALI, ILARIA;
2008-01-01
Abstract
We give a geometrical description of the spin-embedding $e_{sp}$ of the symplectic dual polar space $\Delta\cong DW(5,2^r)$ by showing how the natural embedding of $W(5,2^r)$ into $\PG(5,2^r)$ is involved in the Grassman-embedding $e_{gr}$ of $\Delta.$ We prove that the map sending every quad of $\Delta$ to its nucleus realizes the natural embedding of $W(5,2^r).$ Taking the quotient of $e_{gr}$ over the space spanned by the nuclei of the quadrics corresponding to the quads of $\Delta$ gives an embedding isomorphic to $e_{sp}.$File | Dimensione | Formato | |
---|---|---|---|
YJCTA3853.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
325.24 kB
Formato
Adobe PDF
|
325.24 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/18562
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo