We study the linear series |L-3P| of hyperplane sections with a triple point P on a surface S embedded via a very ample line bundle L for a general point P. If this linear series does not have the expected dimension, we call (S,L) triple-point defective. We show that on a triple-point defective surface through a general point every hyperplane section has either a triple component or the surface is rationally ruled and the hyperplane section contains twice a fibre of the ruling.

Chiantini, L., Markwig, T. (2010). Triple-point defective surfaces. ADVANCES IN GEOMETRY, 10, 527-547 [10.1515/ADVGEOM.2010.030].

Triple-point defective surfaces

CHIANTINI, LUCA;
2010-01-01

Abstract

We study the linear series |L-3P| of hyperplane sections with a triple point P on a surface S embedded via a very ample line bundle L for a general point P. If this linear series does not have the expected dimension, we call (S,L) triple-point defective. We show that on a triple-point defective surface through a general point every hyperplane section has either a triple component or the surface is rationally ruled and the hyperplane section contains twice a fibre of the ruling.
2010
Chiantini, L., Markwig, T. (2010). Triple-point defective surfaces. ADVANCES IN GEOMETRY, 10, 527-547 [10.1515/ADVGEOM.2010.030].
File in questo prodotto:
File Dimensione Formato  
0Triple.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 220.62 kB
Formato Adobe PDF
220.62 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/17868
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo