We use the method of the topological degree, the theory of fractional powers of positive operators, and the Grisvard formula together with results proved by G. Raugel and G. R. Sell to study the periodic solutions of the incompressible Navier-Stokes equations in a thin three-dimensional domain. © 2000 Plenum Publishing Corporation.

Johnson, R., Nistri, P., Kamenskii, M. (2000). On the existence of periodic solutions of the Navier-Stokes equations in a thin domain using the topological degree. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 12(4), 681-712 [10.1023/A:1009076604114].

On the existence of periodic solutions of the Navier-Stokes equations in a thin domain using the topological degree

Nistri P.;
2000-01-01

Abstract

We use the method of the topological degree, the theory of fractional powers of positive operators, and the Grisvard formula together with results proved by G. Raugel and G. R. Sell to study the periodic solutions of the incompressible Navier-Stokes equations in a thin three-dimensional domain. © 2000 Plenum Publishing Corporation.
2000
Johnson, R., Nistri, P., Kamenskii, M. (2000). On the existence of periodic solutions of the Navier-Stokes equations in a thin domain using the topological degree. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 12(4), 681-712 [10.1023/A:1009076604114].
File in questo prodotto:
File Dimensione Formato  
398020-U-GOV.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 226.04 kB
Formato Adobe PDF
226.04 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/17616
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo