Let Γ be a finite geometry of rank n ≥ 2 with a selected type of elements, called 'points'. Let m be the number of 'points' of Γ. Under some mild hypotheses on Γ we can consider an affine expansion of Γ to AG(m, 2). We prove that the geometries obtained by applying this construction to matroids are simply connected. Then we exploit this result to study universal covers of certain geometries arising from hyperbolic quadrics and symplectic varieties over GF(2).

Baumeister, B., Meixner, T., Pasini, A. (1997). GF(2)-expansions. GEOMETRIAE DEDICATA, 67(2), 163-180 [10.1023/A:1004913528398].

GF(2)-expansions

PASINI A.
1997-01-01

Abstract

Let Γ be a finite geometry of rank n ≥ 2 with a selected type of elements, called 'points'. Let m be the number of 'points' of Γ. Under some mild hypotheses on Γ we can consider an affine expansion of Γ to AG(m, 2). We prove that the geometries obtained by applying this construction to matroids are simply connected. Then we exploit this result to study universal covers of certain geometries arising from hyperbolic quadrics and symplectic varieties over GF(2).
1997
Baumeister, B., Meixner, T., Pasini, A. (1997). GF(2)-expansions. GEOMETRIAE DEDICATA, 67(2), 163-180 [10.1023/A:1004913528398].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/17593
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo