We introduce the notion of scattered sets of points of a dual polar space, focusing on minimal ones. We prove that a dual polar space Delta of rank n always admits minimal scattered sets of size 2(n). We also prove that the size of a minimal scattered set is a lower bound for dim(V) if the dual polar space Delta has a polarized embedding e : Delta -> PG(V), namely a lax embedding satisfying the following: for every point p of Delta, the set HI, of points at non-maximal distance from p is mapped by e into a hyperplane of PG(V). Finally, we consider the case n = 2 and determine all the possible sizes of minimal scattered sets of finite classical generalized quadrangles. (c) 2007 Published by Elsevier Ltd.

DE BRUYN, B., Pasini, A. (2007). minimal scattered sets and polarized embeddings of dual polar spaces. EUROPEAN JOURNAL OF COMBINATORICS, 28(7), 1890-1909 [10.1016/j.ejc.2006.08.003].

minimal scattered sets and polarized embeddings of dual polar spaces

PASINI A.
2007-01-01

Abstract

We introduce the notion of scattered sets of points of a dual polar space, focusing on minimal ones. We prove that a dual polar space Delta of rank n always admits minimal scattered sets of size 2(n). We also prove that the size of a minimal scattered set is a lower bound for dim(V) if the dual polar space Delta has a polarized embedding e : Delta -> PG(V), namely a lax embedding satisfying the following: for every point p of Delta, the set HI, of points at non-maximal distance from p is mapped by e into a hyperplane of PG(V). Finally, we consider the case n = 2 and determine all the possible sizes of minimal scattered sets of finite classical generalized quadrangles. (c) 2007 Published by Elsevier Ltd.
2007
DE BRUYN, B., Pasini, A. (2007). minimal scattered sets and polarized embeddings of dual polar spaces. EUROPEAN JOURNAL OF COMBINATORICS, 28(7), 1890-1909 [10.1016/j.ejc.2006.08.003].
File in questo prodotto:
File Dimensione Formato  
YEUJC1139.pdf

non disponibili

Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 355.09 kB
Formato Adobe PDF
355.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/17507
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo