The ratio between the volume of the p-centroid body of a convex body K in R-n and the volume of K attains its minimum value if and only if K is an origin symmetric ellipsoid. This result, the L-p-Busemann Petty centroid inequality, was recently proved by Lutwak, Yang, and Zhang, In this paper we show that all the intrinsic volumes of the p-centroid body of K are convex functions of a time-like parameter when K is moved by shifting all the chords parallel to a fixed direction. The L-p-Busemann-Petty centroid inequality is a consequence of this general fact. (C) 2002 Elsevier Science (USA).
Campi, S., Gronchi, P. (2002). The Lp-Busemann-Petty centroid inequality. ADVANCES IN MATHEMATICS, 167(1), 128-141 [10.1006/aima.2001.2036].
The Lp-Busemann-Petty centroid inequality
CAMPI, STEFANO;
2002-01-01
Abstract
The ratio between the volume of the p-centroid body of a convex body K in R-n and the volume of K attains its minimum value if and only if K is an origin symmetric ellipsoid. This result, the L-p-Busemann Petty centroid inequality, was recently proved by Lutwak, Yang, and Zhang, In this paper we show that all the intrinsic volumes of the p-centroid body of K are convex functions of a time-like parameter when K is moved by shifting all the chords parallel to a fixed direction. The L-p-Busemann-Petty centroid inequality is a consequence of this general fact. (C) 2002 Elsevier Science (USA).File | Dimensione | Formato | |
---|---|---|---|
centroid.pdf
non disponibili
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
199.73 kB
Formato
Adobe PDF
|
199.73 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/17198
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo