Extending a result of Zacharov, we show that every nonzero enumeration degree consists of infinitely many s-degrees. In fact we show that there is no minimal s-degree inside any nonzero enumeration degree. This answers open questions in the literature raised by Cooper and Batyrshin.
Kent, T.F., Meng Ng, K., Sorbi, A. (2025). Every nonzero enumeration degree contains infinitely many singleton degrees. ALGEBRA AND LOGIC, 63(6), 442-450.
Every nonzero enumeration degree contains infinitely many singleton degrees
Andrea Sorbi
2025-01-01
Abstract
Extending a result of Zacharov, we show that every nonzero enumeration degree consists of infinitely many s-degrees. In fact we show that there is no minimal s-degree inside any nonzero enumeration degree. This answers open questions in the literature raised by Cooper and Batyrshin.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
kent-ng-sorbi-editorial.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
107.95 kB
Formato
Adobe PDF
|
107.95 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1296135
