Extending a result of Zacharov, we show that every nonzero enumeration degree consists of infinitely many s-degrees. In fact we show that there is no minimal s-degree inside any nonzero enumeration degree. This answers open questions in the literature raised by Cooper and Batyrshin.

Kent, T.F., Meng Ng, K., Sorbi, A. (2025). Every nonzero enumeration degree contains infinitely many singleton degrees. ALGEBRA AND LOGIC, 63(6), 442-450.

Every nonzero enumeration degree contains infinitely many singleton degrees

Andrea Sorbi
2025-01-01

Abstract

Extending a result of Zacharov, we show that every nonzero enumeration degree consists of infinitely many s-degrees. In fact we show that there is no minimal s-degree inside any nonzero enumeration degree. This answers open questions in the literature raised by Cooper and Batyrshin.
2025
Kent, T.F., Meng Ng, K., Sorbi, A. (2025). Every nonzero enumeration degree contains infinitely many singleton degrees. ALGEBRA AND LOGIC, 63(6), 442-450.
File in questo prodotto:
File Dimensione Formato  
kent-ng-sorbi-editorial.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 107.95 kB
Formato Adobe PDF
107.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1296135