We compute an upper bound for the value of the L1-relaxed area of the graph of the vortex map u: Bl(0) ⊂ℝ2 → ℝ2 u(x):= x/|x|, x ≠ 0, for all values of l > 0. Together with a previously proven lower bound, this upper bound turns out to be optimal. Interestingly, for the radius l in a certain range, in particular l not too large, a Plateau-type problem, having as solution a sort of catenoid constrained to contain a segment, has to be solved.
Bellettini, G., Elshorbagy, A., Scala, R. (2025). The L1-relaxed area of the graph of the vortex map: Optimal upper bound. ADVANCES IN CALCULUS OF VARIATIONS, 1-24 [10.1515/acv-2024-0101].
The L1-relaxed area of the graph of the vortex map: Optimal upper bound
Giovanni Bellettini;Riccardo Scala
2025-01-01
Abstract
We compute an upper bound for the value of the L1-relaxed area of the graph of the vortex map u: Bl(0) ⊂ℝ2 → ℝ2 u(x):= x/|x|, x ≠ 0, for all values of l > 0. Together with a previously proven lower bound, this upper bound turns out to be optimal. Interestingly, for the radius l in a certain range, in particular l not too large, a Plateau-type problem, having as solution a sort of catenoid constrained to contain a segment, has to be solved.| File | Dimensione | Formato | |
|---|---|---|---|
|
Bellettini_Elshorbaghy_Scala_Adv_Calc_Var.pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
5.79 MB
Formato
Adobe PDF
|
5.79 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1291874
