Growing evidence demonstrates the critical roles of long non-coding RNAs (lncRNAs) in osteoarthritis (OA) pathogenesis. The lncRNA XIST is one of the most commonly studied; however, its function remains unclear. This study aimed to research the molecular mechanism of XIST in human OA chondrocytes. Cells were transfected with small interfering RNA against XIST or with a microRNA (miR)-146a inhibitor in the presence of interleukin (IL)-1 beta. Viability was detected using MTT; apoptosis using cytometry; and XIST, miR-146a, B-cell lymphoma (BCL)2, and metalloproteinase (MMP)-13 expression using real-time PCR. The analysis of p50 and p65 nuclear factor (NF)-kappa B was conducted using PCR and immunofluorescence. Our findings showed that XIST was highly expressed in OA chondrocytes when compared to T/C-28a2 lines. Furthermore, XIST silencing significantly promoted survival and limited apoptosis, with a concomitant over expression of BCL2, reduction in MMP-13 mRNA, and NF-kappa B activation after IL-1 beta stimulus. Conversely, miR-146a was significantly down-regulated in OA cells, while its levels were increased following XIST silencing; moreover, miR-146a inhibition induced opposite results to those caused by XIST. Finally, the down-regulation of XIST was correlated to the over-expression of miR-146a, with a consequent modulation of BCL2, MMP-13, and NF-kappa B. This study suggests an influence of the XIST/miR-146a axis on the viability, apoptosis, and matrix degradation occurring in OA.

Cheleschi, S., Mondanelli, N., Seccafico, I., Corsaro, R., Moretti, E., Collodel, G., et al. (2025). Role of lncRNA XIST/miR-146a Axis in Matrix Degradation and Apoptosis of Osteoarthritic Chondrocytes Through Regulation of MMP-13 and BCL2. BIOLOGY, 14(3) [10.3390/biology14030221].

Role of lncRNA XIST/miR-146a Axis in Matrix Degradation and Apoptosis of Osteoarthritic Chondrocytes Through Regulation of MMP-13 and BCL2

Cheleschi S.;Mondanelli N.;Seccafico I.;Corsaro R.;Moretti E.;Collodel G.;Fioravanti A.
2025-01-01

Abstract

Growing evidence demonstrates the critical roles of long non-coding RNAs (lncRNAs) in osteoarthritis (OA) pathogenesis. The lncRNA XIST is one of the most commonly studied; however, its function remains unclear. This study aimed to research the molecular mechanism of XIST in human OA chondrocytes. Cells were transfected with small interfering RNA against XIST or with a microRNA (miR)-146a inhibitor in the presence of interleukin (IL)-1 beta. Viability was detected using MTT; apoptosis using cytometry; and XIST, miR-146a, B-cell lymphoma (BCL)2, and metalloproteinase (MMP)-13 expression using real-time PCR. The analysis of p50 and p65 nuclear factor (NF)-kappa B was conducted using PCR and immunofluorescence. Our findings showed that XIST was highly expressed in OA chondrocytes when compared to T/C-28a2 lines. Furthermore, XIST silencing significantly promoted survival and limited apoptosis, with a concomitant over expression of BCL2, reduction in MMP-13 mRNA, and NF-kappa B activation after IL-1 beta stimulus. Conversely, miR-146a was significantly down-regulated in OA cells, while its levels were increased following XIST silencing; moreover, miR-146a inhibition induced opposite results to those caused by XIST. Finally, the down-regulation of XIST was correlated to the over-expression of miR-146a, with a consequent modulation of BCL2, MMP-13, and NF-kappa B. This study suggests an influence of the XIST/miR-146a axis on the viability, apoptosis, and matrix degradation occurring in OA.
2025
Cheleschi, S., Mondanelli, N., Seccafico, I., Corsaro, R., Moretti, E., Collodel, G., et al. (2025). Role of lncRNA XIST/miR-146a Axis in Matrix Degradation and Apoptosis of Osteoarthritic Chondrocytes Through Regulation of MMP-13 and BCL2. BIOLOGY, 14(3) [10.3390/biology14030221].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1290476
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo