We prove a lower bound for the value of the L1-relaxed area of the graph of the map u:Bl(0)∖{0}⊂R2→R2, u(x):=x/|x|, x≠0, for all values of the radius l>0. In the computation of the singular part of the relaxed area, for l in a certain range, in particular l not too large, a nonparametric Plateau-type problem with partial free boundary has to be solved. Our lower bound turns out to be optimal, in view of an upper bound proven in a companion paper.
Bellettini, G., Elshorbagy, A., Scala, R. (2025). The L1-relaxed area of the graph of the vortex map: Optimal lower bound. NONLINEAR ANALYSIS, 256, 1-47 [10.1016/j.na.2025.113803].
The L1-relaxed area of the graph of the vortex map: Optimal lower bound
Bellettini G.;Scala R.
2025-01-01
Abstract
We prove a lower bound for the value of the L1-relaxed area of the graph of the map u:Bl(0)∖{0}⊂R2→R2, u(x):=x/|x|, x≠0, for all values of the radius l>0. In the computation of the singular part of the relaxed area, for l in a certain range, in particular l not too large, a nonparametric Plateau-type problem with partial free boundary has to be solved. Our lower bound turns out to be optimal, in view of an upper bound proven in a companion paper.File | Dimensione | Formato | |
---|---|---|---|
2025_Bellettini_ElShorbagy_Scala_NA.pdf
accesso aperto
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
3.94 MB
Formato
Adobe PDF
|
3.94 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1290134