ABSTRACT: Neuropathic pain remains an undertreated condition and there is a medical need to develop effective treatments. Accumulating evidence indicates that posttranscriptional regulation of gene expression is involved in neuropathic pain; however, RNA processing is not clearly investigated. Our study investigated the role of HuR, an RNA binding protein, in promoting neuropathic pain and trauma-induced microglia activation in the spared nerve injury mouse model. To this aim, an antisense oligonucleotide (ASO) knockdown of HuR gene expression was used. Antisense oligonucleotides poorly cross the blood-brain barrier and an intranasal (i.n.) administration was used to achieve central nervous system penetration through a noninvasive delivery. The efficacy of i.n. ASO administration was compared to an intrathecal (i.t.) delivery. I.n. administered ASO reduced spinal HuR protein and relieved pain hypersensitivity with a similar efficacy to i.t. administration. Immunofluorescence studies showed that HuR was expressed in activated microglia, colocalized with p38 and, partially, with extracellular signal-regulated kinase (ERK)1/2 within the spinal cord dorsal horn. An anti-HuR ASO inhibited the activation of spinal microglia by reducing the levels of proinflammatory cytokines, inducible nitric oxide synthase, the activation of nuclear factor-κB (NF-κB), and suppressed the spared nerve injury-induced overphosphorylation of spinal p38, ERK1/2 and c-Jun-N-terminal kinase (JNK)-1. In addition, HuR silencing increased the expression of the anti-inflammatory cytokine IL-10, promoting the shift of microglial M1 to M2 phenotype. Targeting HuR by i.n. anti-HuR ASO might represent a noninvasive promising perspective for neuropathic pain management by its powerful inhibition of microglia-mediated spinal neuroinflammation and promotion of an anti-inflammatory and neuroprotectant response. Copyright © 2020 International Association for the Study of Pain.
Borgonetti, V., Galeotti, N. (2021). Intranasal delivery of an antisense oligonucleotide to the RNA-binding protein HuR relieves nerve injury-induced neuropathic pain. PAIN, 162(5), 1500-1510 [10.1097/j.pain.0000000000002154].
Intranasal delivery of an antisense oligonucleotide to the RNA-binding protein HuR relieves nerve injury-induced neuropathic pain
Borgonetti V;
2021-01-01
Abstract
ABSTRACT: Neuropathic pain remains an undertreated condition and there is a medical need to develop effective treatments. Accumulating evidence indicates that posttranscriptional regulation of gene expression is involved in neuropathic pain; however, RNA processing is not clearly investigated. Our study investigated the role of HuR, an RNA binding protein, in promoting neuropathic pain and trauma-induced microglia activation in the spared nerve injury mouse model. To this aim, an antisense oligonucleotide (ASO) knockdown of HuR gene expression was used. Antisense oligonucleotides poorly cross the blood-brain barrier and an intranasal (i.n.) administration was used to achieve central nervous system penetration through a noninvasive delivery. The efficacy of i.n. ASO administration was compared to an intrathecal (i.t.) delivery. I.n. administered ASO reduced spinal HuR protein and relieved pain hypersensitivity with a similar efficacy to i.t. administration. Immunofluorescence studies showed that HuR was expressed in activated microglia, colocalized with p38 and, partially, with extracellular signal-regulated kinase (ERK)1/2 within the spinal cord dorsal horn. An anti-HuR ASO inhibited the activation of spinal microglia by reducing the levels of proinflammatory cytokines, inducible nitric oxide synthase, the activation of nuclear factor-κB (NF-κB), and suppressed the spared nerve injury-induced overphosphorylation of spinal p38, ERK1/2 and c-Jun-N-terminal kinase (JNK)-1. In addition, HuR silencing increased the expression of the anti-inflammatory cytokine IL-10, promoting the shift of microglial M1 to M2 phenotype. Targeting HuR by i.n. anti-HuR ASO might represent a noninvasive promising perspective for neuropathic pain management by its powerful inhibition of microglia-mediated spinal neuroinflammation and promotion of an anti-inflammatory and neuroprotectant response. Copyright © 2020 International Association for the Study of Pain.File | Dimensione | Formato | |
---|---|---|---|
Intranasal_HuR_ASO_PAIN.pdf
non disponibili
Descrizione: Articolo
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1289116