In this paper we study the null controllability property for a single population model in which the population y depends on time t, space x, age a and size τ. Moreover, the diffusion coefficient k is degenerate at a point of the domain or both extremal points. Our technique is essentially based on Carleman estimates. The τ dependence requires us to modify the weight for the Carleman estimates, and accordingly the proof of the observability inequality. Thanks to this observability inequality we obtain a null controllability result for an intermediate problem and finally for the initial system through suitable cut off functions.

Fragnelli, G., Yamamoto, M. (2021). Carleman Estimates and Controllability for a Degenerate Structured Population Model. APPLIED MATHEMATICS AND OPTIMIZATION, 84(1), 999-1044 [10.1007/s00245-020-09669-0].

Carleman Estimates and Controllability for a Degenerate Structured Population Model

Fragnelli, Genni
;
2021-01-01

Abstract

In this paper we study the null controllability property for a single population model in which the population y depends on time t, space x, age a and size τ. Moreover, the diffusion coefficient k is degenerate at a point of the domain or both extremal points. Our technique is essentially based on Carleman estimates. The τ dependence requires us to modify the weight for the Carleman estimates, and accordingly the proof of the observability inequality. Thanks to this observability inequality we obtain a null controllability result for an intermediate problem and finally for the initial system through suitable cut off functions.
2021
Fragnelli, G., Yamamoto, M. (2021). Carleman Estimates and Controllability for a Degenerate Structured Population Model. APPLIED MATHEMATICS AND OPTIMIZATION, 84(1), 999-1044 [10.1007/s00245-020-09669-0].
File in questo prodotto:
File Dimensione Formato  
rivista.pdf

accesso aperto

Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 6.19 MB
Formato Adobe PDF
6.19 MB Adobe PDF Visualizza/Apri
s00245-020-09669-0.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 563.09 kB
Formato Adobe PDF
563.09 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1279791