We show the existence of nontrivial solutions for a class of quasilinear problems in which the governing operators depend on the unknown function. By using a suitable variational setting and a weak version of the Cerami-Palais-Smale condition, we establish the desired result without assuming that the nonlinear source satisfies the Ambrosetti-Rabinowitz condition.

Candela, A.M., Fragnelli, G., Mugnai, D. (2021). Quasilinear Problems without the Ambrosetti-Rabinowitz Condition. MINIMAX THEORY AND ITS APPLICATIONS, 6(2), 239-250.

Quasilinear Problems without the Ambrosetti-Rabinowitz Condition

Fragnelli, Genni;
2021-01-01

Abstract

We show the existence of nontrivial solutions for a class of quasilinear problems in which the governing operators depend on the unknown function. By using a suitable variational setting and a weak version of the Cerami-Palais-Smale condition, we establish the desired result without assuming that the nonlinear source satisfies the Ambrosetti-Rabinowitz condition.
2021
Candela, A.M., Fragnelli, G., Mugnai, D. (2021). Quasilinear Problems without the Ambrosetti-Rabinowitz Condition. MINIMAX THEORY AND ITS APPLICATIONS, 6(2), 239-250.
File in questo prodotto:
File Dimensione Formato  
5+(2).pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 118.56 kB
Formato Adobe PDF
118.56 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1279787