We show the existence of nontrivial solutions for a class of quasilinear problems in which the governing operators depend on the unknown function. By using a suitable variational setting and a weak version of the Cerami-Palais-Smale condition, we establish the desired result without assuming that the nonlinear source satisfies the Ambrosetti-Rabinowitz condition.
Candela, A.M., Fragnelli, G., Mugnai, D. (2021). Quasilinear Problems without the Ambrosetti-Rabinowitz Condition. MINIMAX THEORY AND ITS APPLICATIONS, 6(2), 239-250.
Quasilinear Problems without the Ambrosetti-Rabinowitz Condition
Fragnelli, Genni;
2021-01-01
Abstract
We show the existence of nontrivial solutions for a class of quasilinear problems in which the governing operators depend on the unknown function. By using a suitable variational setting and a weak version of the Cerami-Palais-Smale condition, we establish the desired result without assuming that the nonlinear source satisfies the Ambrosetti-Rabinowitz condition.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
5+(2).pdf
non disponibili
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
118.56 kB
Formato
Adobe PDF
|
118.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1279787