We establish Hardy - Poincaré and Carleman estimates for non-smooth degenerate/singular parabolic operators in divergence form with Neumann boundary conditions. The degeneracy and the singularity occur both in the interior of the spatial domain. We apply these inequalities to deduce well-posedness and null controllability for the associated evolution problem.
Fragnelli, G., Mugnai, D. (2020). Singular parabolic equations with interior degeneracy and non smooth coefficients: the Neumann case. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S, 13(5), 1495-1511 [10.3934/dcdss.2020084].
Singular parabolic equations with interior degeneracy and non smooth coefficients: the Neumann case
Fragnelli Genni;
2020-01-01
Abstract
We establish Hardy - Poincaré and Carleman estimates for non-smooth degenerate/singular parabolic operators in divergence form with Neumann boundary conditions. The degeneracy and the singularity occur both in the interior of the spatial domain. We apply these inequalities to deduce well-posedness and null controllability for the associated evolution problem.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
rivista.pdf
non disponibili
Tipologia:
Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.7 MB
Formato
Adobe PDF
|
2.7 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento:
https://hdl.handle.net/11365/1279783