We deal with a degenerate model in divergence form describing the dynamics of a population depending on time, on age and on space. We assume that the degeneracy occurs in the interior of the spatial domain and we focus on null controllability. To this aim, rst we prove Carleman estimates for the associated adjoint problem, then, via cut off functions, we prove the existence of a null control function localized in the interior of the space domain. We consider two cases: either the control region contains the degeneracy point x0, or the control region is the union of two intervals each of them lying on one side of x0. This paper complement some previous results, concluding the study of the subject.

Fragnelli, G. (2019). Controllability for a population equation with interior degeneracy. PURE AND APPLIED FUNCTIONAL ANALYSIS, 4(4), 803-824.

Controllability for a population equation with interior degeneracy

Fragnelli Genni
2019-01-01

Abstract

We deal with a degenerate model in divergence form describing the dynamics of a population depending on time, on age and on space. We assume that the degeneracy occurs in the interior of the spatial domain and we focus on null controllability. To this aim, rst we prove Carleman estimates for the associated adjoint problem, then, via cut off functions, we prove the existence of a null control function localized in the interior of the space domain. We consider two cases: either the control region contains the degeneracy point x0, or the control region is the union of two intervals each of them lying on one side of x0. This paper complement some previous results, concluding the study of the subject.
2019
Fragnelli, G. (2019). Controllability for a population equation with interior degeneracy. PURE AND APPLIED FUNCTIONAL ANALYSIS, 4(4), 803-824.
File in questo prodotto:
File Dimensione Formato  
fragnelli.pdf

non disponibili

Tipologia: Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 384.61 kB
Formato Adobe PDF
384.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
pafav4n4p803.pdf

non disponibili

Tipologia: PDF editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 609.61 kB
Formato Adobe PDF
609.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11365/1279777