Background: Presence of residual neurovascular activity within glioma lesions have been recently demonstrated via functional MRI (fMRI) along with active electrical synapses between glioma cells and healthy neurons that influence survival. In this study, we aimed to investigate whether gliomas demonstrate synchronized neurovascular activity with the rest of the brain, by measuring Blood Oxygen Level Dependent (BOLD) signal synchronization, that is, functional connectivity (FC), while also testing whether the strength of such connectivity might predict patients' overall survival (OS). Methods: Resting-state fMRI scans of patients who underwent pre-surgical brain mapping were analyzed (total sample, n = 54; newly diagnosed patients, n = 18; recurrent glioma group, n = 36). A seed-To-voxel analysis was conducted to estimate the FC signal profile of the tumor mass. A regression model was then built to investigate the potential correlation between tumor FC and individual OS. Finally, an unsupervised, cross-validated clustering analysis was performed including tumor FC and clinical OS predictors (e.g., Karnofsky Performance Status-KPS-score, tumor volume, and genetic profile) to verify the performance of tumor FC in predicting OS with respect to validated radiological, demographic, genetic and clinical prognostic factors. Results: In both newly diagnosed and recurrent glioma patients a significant pattern of BOLD synchronization between the solid tumor and distant brain regions was found. Crucially, glioma-brain FC positively correlated with variance in individual survival in both newly diagnosed glioma group (r = 0.90-0.96; P <. 001; R2 = 81-92%) and in the recurrent glioma group (r = 0.72; P <. 001; R2 = 52%), outperforming standard clinical, radiological and genetic predictors. Conclusions: Results suggest glioma's synchronization with distant brain regions should be further explored as a possible diagnostic and prognostic biomarker.
Sprugnoli, G., Rigolo, L., Faria, M., Juvekar, P., Tie, Y., Rossi, S., et al. (2022). Tumor BOLD connectivity profile correlates with glioma patients' survival. NEURO-ONCOLOGY ADVANCES, 4(1) [10.1093/noajnl/vdac153].
Tumor BOLD connectivity profile correlates with glioma patients' survival
Rossi S.;
2022-01-01
Abstract
Background: Presence of residual neurovascular activity within glioma lesions have been recently demonstrated via functional MRI (fMRI) along with active electrical synapses between glioma cells and healthy neurons that influence survival. In this study, we aimed to investigate whether gliomas demonstrate synchronized neurovascular activity with the rest of the brain, by measuring Blood Oxygen Level Dependent (BOLD) signal synchronization, that is, functional connectivity (FC), while also testing whether the strength of such connectivity might predict patients' overall survival (OS). Methods: Resting-state fMRI scans of patients who underwent pre-surgical brain mapping were analyzed (total sample, n = 54; newly diagnosed patients, n = 18; recurrent glioma group, n = 36). A seed-To-voxel analysis was conducted to estimate the FC signal profile of the tumor mass. A regression model was then built to investigate the potential correlation between tumor FC and individual OS. Finally, an unsupervised, cross-validated clustering analysis was performed including tumor FC and clinical OS predictors (e.g., Karnofsky Performance Status-KPS-score, tumor volume, and genetic profile) to verify the performance of tumor FC in predicting OS with respect to validated radiological, demographic, genetic and clinical prognostic factors. Results: In both newly diagnosed and recurrent glioma patients a significant pattern of BOLD synchronization between the solid tumor and distant brain regions was found. Crucially, glioma-brain FC positively correlated with variance in individual survival in both newly diagnosed glioma group (r = 0.90-0.96; P <. 001; R2 = 81-92%) and in the recurrent glioma group (r = 0.72; P <. 001; R2 = 52%), outperforming standard clinical, radiological and genetic predictors. Conclusions: Results suggest glioma's synchronization with distant brain regions should be further explored as a possible diagnostic and prognostic biomarker.File | Dimensione | Formato | |
---|---|---|---|
Tumor BOLD connectivity profile-Sprugnoli-2022.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
PDF editoriale
Licenza:
Creative commons
Dimensione
817.14 kB
Formato
Adobe PDF
|
817.14 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1278042