Given any = γ(S1) ⊂ R2, image of a Lipschitz curve γ : S1 → R2, not necessarily injective, we provide an explicit formula for computing the value of A(γ) := inf | det(∇u)|dx u = γ on S1 , B1(0) where the infimumiscomputedamongall Lipschitz maps u : B1(0) → R2 havingboundary datum γ. This coincides with the area of a minimal disk spanning , i.e., a solution of the Plateau problem of disk type. The novelty of the results relies in the fact that we do not assume the curve γ to be injective and our formula allows arbitrary self-intersections.
Caroccia, M., Scala, R. (2024). On the singular planar Plateau problem. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 63(9) [10.1007/s00526-024-02853-y].
On the singular planar Plateau problem
Scala, Riccardo
2024-01-01
Abstract
Given any = γ(S1) ⊂ R2, image of a Lipschitz curve γ : S1 → R2, not necessarily injective, we provide an explicit formula for computing the value of A(γ) := inf | det(∇u)|dx u = γ on S1 , B1(0) where the infimumiscomputedamongall Lipschitz maps u : B1(0) → R2 havingboundary datum γ. This coincides with the area of a minimal disk spanning , i.e., a solution of the Plateau problem of disk type. The novelty of the results relies in the fact that we do not assume the curve γ to be injective and our formula allows arbitrary self-intersections.File | Dimensione | Formato | |
---|---|---|---|
plateau2d.pdf
non disponibili
Descrizione: articolo
Tipologia:
PDF editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
794.2 kB
Formato
Adobe PDF
|
794.2 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
https://hdl.handle.net/11365/1277935